精英家教网 > 高中数学 > 题目详情
7.某几何体的三视图如图所示,其中俯视图下半部分是半径为1的半圆,则该几何体的表面积是(  )
A.20+2πB.20+πC.20-2πD.20-π

分析 由三视图知该几何体是棱长为2的正方体挖掉半个圆柱所得的组合体,由三视图求出几何元素的长度,由圆柱的表面积公式和矩形面积公式求出该几何体的表面积.

解答 解:根据三视图可知几何体是棱长为2的正方体挖掉半个圆柱所得的组合体,
且圆柱底面圆的半径是1、母线长是2,
∴该几何体的表面积S=$2(2×2-\frac{1}{2}π×{1}^{2})$+3×2×2+π×1×2
=20+π,
故选:B.

点评 本题考查三视图求几何体的体积以及表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图,在正方体ABCD-A1B1C1D1中,E,F分别是棱AB、BC的中点,则平面A1DE与平面C1DF所成二面角的余弦值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.
(Ⅰ)求线段ON的长;
(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.甲乙两人做游戏,游戏的规则是:两人轮流从1(1必须报)开始连续报数,每人一次最少要报一个数,最多可以连续报7个数(如,一个人先报数“1,2”,则下一个人可以有“3”,“3,4”,…,“3,4,5,6,7,8,9”等七种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是1,2,3,4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某小学为迎接校运动会的到来,在三年级招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者中分别各有10人和6人喜欢运动,其他人员不喜欢运动.
(Ⅰ)根据以上数据完成以下2×2列联表:
喜欢运动不喜欢运动总计
a=b=
c=d=
总计n=
(Ⅱ)判断性别与喜欢运动是否有关,并说明理由.
(Ⅲ)如果喜欢运动的女志愿者中恰有4人懂得医疗救护,现从喜欢运动的女志愿者中抽取2名负责医疗救护工作,求抽出的2名志愿者都懂得医疗救护的概率.
附:${Χ^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}({n=a+b+c+d})$
临界值表(部分):
P(χ2≥x00.0500.0250.0100.001
x03.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程为ρ-4cosθ=0,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,直线l过点M(3,0),倾斜角为$\frac{π}{6}$.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)设直线l与曲线C交于AB两点,求|MA|+|MB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某四面体的三视图如图所示,则该四面体的体积是(  )
A.2B.8C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x2-2ln|x|与g(x)=sin(ωx+φ)有两个公共点,则在下列函数中满足条件的周期最大的g(x)=(  )
A.sin(2πx-$\frac{π}{2}$)B.sin($\frac{π}{2}$x-$\frac{π}{2}$)C.sin(πx-$\frac{π}{2}$)D.sin(πx+$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如果无穷数列{an}满足下列条件:
①an+an+2≤2an+1
②存在实数M,使得an≤M,其中n∈N*,
那么我们称数列{an}为Ω数列.
(1)设{an}是各项为正数的等比数列,Sn是其前n项和,a3=$\frac{1}{4}$,S3=$\frac{7}{4}$,证明:数列{Sn}是Ω数列;
(2)设数列{an}的通项为an=5n-2n,且是Ω数列,求M的取值范围;
(3)设数列{an}是各项均为正整数的Ω数列,问:是否存在常数n0∈N*,使得a${\;}_{n_0}}$>a${\;}_{{n_0}+1}}$,并证明你的结论.

查看答案和解析>>

同步练习册答案