| A. | sin(2πx-$\frac{π}{2}$) | B. | sin($\frac{π}{2}$x-$\frac{π}{2}$) | C. | sin(πx-$\frac{π}{2}$) | D. | sin(πx+$\frac{π}{2}$) |
分析 利用导数研究函数f(x)的最值,画出f(x),g(x)的图象,利用f(x)与g(x)的图象有两个公共点,建立条件关系,结合周期公式和最值点,即可得到结论.
解答
解:f(x)定义域为x≠0,
①当x>0时,f(x)=x2-2ln|x|=x2-2lnx,
f'(x)=2x-$\frac{2}{x}$,
令f'(x)=0,解得x=1,
由f'(x)<0,则0<x<1,
由f'(x)>0,则x>1,
则当x=1时,f(x)取的最小值,最小值为f(1)=1;
②当x<0时,f(x)=x2-2ln|x|=x2+2lnx,
则f'(x)=2x+$\frac{2}{x}$,
令f'(x)=0,解得x=-1,
由f'(x)<0,则x<-1,
由f'(x)>0,则-1<x<0,
则当x=-1时,函数f(x)取最小值,最小值为f(-1)=1.
综合①②所述:f(x)的最小值为f(-1)=f(1)=1,
∵只有2个公共点,
∴g(x)最大值为1.
则最长周期为|(-1)-1|=2,即T=$\frac{2π}{ω}$=2,即ω=π,
则g(1)=sin(π+φ)=1,
即π+φ=2kπ+$\frac{π}{2}$,即φ=2kπ-$\frac{π}{2}$,k∈Z.
则周期最大的g(x)=sin(πx+2kπ-$\frac{π}{2}$)=sin(πx-$\frac{π}{2}$),k∈Z,
故选:C.
点评 本题主要考查函数图象的应用,根据导数研究函数的最值是解决本题的关键,综合性较强,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | 5 | C. | 3$\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20+2π | B. | 20+π | C. | 20-2π | D. | 20-π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$+$\frac{1}{6}$ | B. | $\frac{π}{3}$+$\frac{1}{3}$ | C. | $\frac{π}{3}$+$\frac{1}{6}$ | D. | $\frac{\sqrt{2}π}{6}$+$\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>a>b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com