8£®ËÕÖÝÊоٰ조¹ãµç¿ñ»¶¹ºÎï½Ú¡±´ÙÏú»î¶¯£¬Ä³³§ÉÌÄâͶÈëÊʵ±µÄ¹ã¸æ·Ñ£¬¶ÔËùÊÛ²úÆ·½øÐдÙÏú£¬¾­µ÷²é²âË㣬¸Ã´ÙÏú²úÆ·ÔÚ¿ñ»¶¹ºÎï½ÚµÄÏúÊÛÁ¿pÍò¼þÓë¹ã¸æ·ÑÓàxÍòÔªÂú×ãp=3-$\frac{2}{x+1}$£¨ÆäÖР0¡Üx¡Üa£¬aΪÕý³£Êý£©£®ÒÑÖªÉú²ú¸ÃÅú²úÆ· pÍò¼þ»¹ÐèͶÈë³É±¾£¨10+2p£©ÍòÔª£¨²»º¬¹ã¸æ·ÑÓã©£¬²úÆ·µÄÏúÊÛ¼Û¸ñ¶¨Îª£¨4+$\frac{20}{p}}$£©Ôª/¼þ£¬¼Ù¶¨³§ÉÌÉú²úµÄ²úÆ·Ç¡ºÃÄܹ»ÊÛÍ꣮
£¨1£©½«¸Ã²úÆ·µÄÀûÈóyÍòÔª±íʾΪ¹ã¸æ·ÑÓÃxÍòÔªµÄº¯Êý£»
£¨2£©ÎÊ¹ã¸æ·ÑͶÈë¶àÉÙÍòԪʱ£¬³§É̵ÄÀûÈó×î´ó£¿

·ÖÎö £¨1£©ÓÉÌâÒâÖª£¬$y=£¨{4+\frac{20}{p}}£©p-x-£¨{10+2p}£©$£¬½«$p=3-\frac{2}{x+1}$´úÈ뻯¼ò¼´¿ÉµÃ³ö£®
£¨2£©y¡ä=$-\frac{£¨x+3£©£¨x-1£©}{£¨x+1£©^{2}}$£¬¶Ôa·ÖÀàÌÖÂÛ£¬ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª£¬$y=£¨{4+\frac{20}{p}}£©p-x-£¨{10+2p}£©$£¬½«$p=3-\frac{2}{x+1}$´úÈ뻯¼òµÃ£º$y=16-\frac{4}{x+1}-x£¨{0¡Üx¡Üa}£©$£®
£¨2£©$y'=-1-\frac{-4}{{{{£¨{x+1}£©}^2}}}=\frac{{-{{£¨{x+1}£©}^2}+4}}{{{{£¨{x+1}£©}^2}}}=-\frac{{{x^2}+2x-3}}{{{{£¨{x+1}£©}^2}}}=-\frac{{£¨{x+3}£©£¨{x-1}£©}}{{{{£¨{x+1}£©}^2}}}$£®
¢Ùµ±a¡Ý1ʱ£¬x¡Ê£¨0£¬1£©Ê±£¬y'£¾0£¬ËùÒÔº¯Êý$y=16-x-\frac{4}{x+1}$ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£»
x¡Ê£¨1£¬a£©Ê±£¬y'£¼0£¬ËùÒÔº¯Êý$y=16-x-\frac{4}{x+1}$ÔÚ£¨1£¬a£©Éϵ¥µ÷µÝ¼õ£¬
¡à´ÙÏú·ÑÓÃͶÈë 1ÍòԪʱ£¬³§¼ÒµÄÀûÈó×î´ó£®
¢Úµ±a£¼1ʱ£¬ÒòΪº¯Êý$y=16-x-\frac{4}{x+1}$ÔÚ£¨0£¬1£©Éϵ¥µ÷µÝÔö£¬$y=16-x-\frac{4}{x+1}$ÔÚ[0£¬a]Éϵ¥µ÷µÝÔö£¬
ËùÒÔx=aʱ£¬º¯ÊýÓÐ×î´óÖµ£®¼´´ÙÏú·ÑÓÃͶÈëaÍòԪʱ£¬³§¼ÒµÄÀûÈó×î´ó£®
×ÛÉÏËùÊö£¬µ± a¡Ý1ʱ£¬´ÙÏú·ÑÓÃͶÈë 1ÍòÔª£¬³§¼ÒµÄÀûÈó×î´ó£»µ±a£¼1ʱ£¬´ÙÏú·ÑÓÃͶÈëaÍòÔª£¬³§¼ÒµÄÀûÈó×î´ó£®

µãÆÀ ±¾Ì⿼²éÁËÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ¡¢¼«ÖµÓë×îÖµ£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÅ×ÎïÏßC£ºy2=2px¾­¹ýµãM£¨2£¬2£©£¬CÔÚµãM´¦µÄÇÐÏß½»xÖáÓÚµãN£¬Ö±Ïßl1¾­¹ýµãNÇÒ´¹Ö±ÓÚxÖᣮ
£¨¢ñ£©ÇóÏß¶ÎONµÄ³¤£»
£¨¢ò£©Éè²»¾­¹ýµãMºÍNµÄ¶¯Ö±Ïßl2£ºx=my+b½»CÓÚµãAºÍB£¬½»l1ÓÚµãE£¬ÈôÖ±ÏßMA¡¢ME¡¢MBµÄбÂÊÒÀ´Î³ÉµÈ²îÊýÁУ¬ÊÔÎÊ£ºl2ÊÇ·ñ¹ý¶¨µã£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ä³ËÄÃæÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃËÄÃæÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®2B£®8C£®$\frac{8}{3}$D£®$\frac{16}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=x2-2ln|x|Óëg£¨x£©=sin£¨¦Øx+¦Õ£©ÓÐÁ½¸ö¹«¹²µã£¬ÔòÔÚÏÂÁк¯ÊýÖÐÂú×ãÌõ¼þµÄÖÜÆÚ×î´óµÄg£¨x£©=£¨¡¡¡¡£©
A£®sin£¨2¦Ðx-$\frac{¦Ð}{2}$£©B£®sin£¨$\frac{¦Ð}{2}$x-$\frac{¦Ð}{2}$£©C£®sin£¨¦Ðx-$\frac{¦Ð}{2}$£©D£®sin£¨¦Ðx+$\frac{¦Ð}{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÉèÓа뾶Ϊ4kmµÄÔ²ÐδåÂ䣬A£¬BÁ½ÈËͬʱ´Ó´åÂäÖÐÐijö·¢£¬BÏò±±Ö±ÐУ¬AÏÈÏò¶«Ö±ÐУ¬³ö´åºó²»¾Ã£¬¸Ä±äǰ½ø·½Ïò£¬ÑØ×ÅÓë´åÂäÖܽçÏàÇеÄÖ±Ïßǰ½ø£¬ºóÀ´Ç¡ÓëBÏàÓö£®ÉèA£¬BÁ½ÈËËÙ¶ÈÒ»¶¨£¬ÆäËٶȱÈΪ4£º1£¬ÎÊÁ½ÈËÔںδ¦ÏàÓö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ä³ÈýÀâÖù±»Ò»¸öÆ½Ãæ½ØÈ¥Ò»²¿·ÖºóËùµÃµÄ¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖи©ÊÓͼÊDZ߳¤Îª2µÄÕýÈý½ÇÐΣ¬Ôò½ØÈ¥²¿·ÖºÍÊ£Óಿ·ÖµÄÌå»ýÖ®±ÈΪ£¨¡¡¡¡£©
A£®$\frac{10}{33}$B£®$\frac{13}{36}$C£®$\frac{13}{23}$D£®$\frac{23}{33}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÖ±ÈýÀâÖùABC-A1B1C1µÄËùÓж¥µã¶¼ÔÚÇòOµÄÇòÃæÉÏ£¬AA1=2$\sqrt{3}$£¬¡ÏBAC=30¡ã£¬BC=1£¬ÔòÇòOµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{20}{3}¦Ð$B£®$\frac{25}{3}¦Ð$C£®$\frac{28}{3}¦Ð$D£®$\frac{32}{3}¦Ð$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èç¹ûÎÞÇîÊýÁÐ{an}Âú×ãÏÂÁÐÌõ¼þ£º
¢Ùan+an+2¡Ü2an+1£»
¢Ú´æÔÚʵÊýM£¬Ê¹µÃan¡ÜM£¬ÆäÖÐn¡ÊN*£¬
ÄÇôÎÒÃdzÆÊýÁÐ{an}Ϊ¦¸ÊýÁУ®
£¨1£©Éè{an}ÊǸ÷ÏîΪÕýÊýµÄµÈ±ÈÊýÁУ¬SnÊÇÆäǰnÏîºÍ£¬a3=$\frac{1}{4}$£¬S3=$\frac{7}{4}$£¬Ö¤Ã÷£ºÊýÁÐ{Sn}ÊǦ¸ÊýÁУ»
£¨2£©ÉèÊýÁÐ{an}µÄͨÏîΪan=5n-2n£¬ÇÒÊǦ¸ÊýÁУ¬ÇóMµÄȡֵ·¶Î§£»
£¨3£©ÉèÊýÁÐ{an}ÊǸ÷Ïî¾ùΪÕýÕûÊýµÄ¦¸ÊýÁУ¬ÎÊ£ºÊÇ·ñ´æÔÚ³£Êýn0¡ÊN*£¬Ê¹µÃa${\;}_{n_0}}$£¾a${\;}_{{n_0}+1}}$£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èô´æÔÚx0¡Ê£¨0£¬3£©£¬Ê¹²»µÈʽx03-12x0+ax0+a-7£¼0³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨4£¬8£©B£®[4£¬9£©C£®£¨-¡Þ£¬4]D£®£¨-¡Þ£¬9£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸