精英家教网 > 高中数学 > 题目详情
1.已知圆E:(x-1)2+y2=4,线段AB、CD都是圆E的弦,且AB与CD垂直且相交于坐标原点O,如图所示,设△AOC的面积为S1,设△BOD的面积为S2
(1)设点A的横坐标为x1,用x1表示|OA|;
(2)求证:|OA|•|OB|为定值;
(3)用|OA|、|OB|、|OC|、|OD|表示出S1+S2,试研究S1+S2是否有最小值,如果有,求出最小值,并写出此时直线AB的方程;若没有最小值,请说明理由.

分析 (1)利用距离公式,即可用x1表示|OA|;
(2)分类讨论,计算|OA|•|OB|,即可证明|OA|•|OB|为定值;
(3)由(2)得|OA|•|OB|=3,同理|OC||OD|=3,利用基本不等式,即可得出结论.

解答 (1)解:设A(x1,y1),代入圆E:(x-1)2+y2=4,得y12=-x12+2x1+3,
∴|OA|=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$=$\sqrt{2{x}_{1}+3}$;
(2)证明:设B(x2,y2),
同理可得|OB|=$\sqrt{2{x}_{2}+3}$,
∴|OA|•|OB|=$\sqrt{4{x}_{1}{x}_{2}+6({x}_{1}+{x}_{2})+9}$
x1≠x2,设直线AB的方程为y=kx,代入圆的方程得(k+1)x2-2x-3=0,
∴x1+x2=$\frac{2}{{k}^{2}+1}$,x1x2=-$\frac{3}{{k}^{2}+1}$,
代入可得|OA|•|OB|=3,
x1=x2,直线过原点,直线AB的方程为x=0,即x1=x2=0,代入可得|OA|•|OB|=3,
综上所述,|OA|•|OB|=3为定值;
(3)解:由(2)得|OA|•|OB|=3,同理|OC||OD|=3
∴S1+S2=$\frac{1}{2}$(|OA||OC|+|OB||OD|)≥$\sqrt{|OA||OC||OB||OD|}$=3,当且仅当|OA||OC|=|OB||OD|时取等号,
此时,S1+S2最小值为3,直线AB的方程为y=±x.

点评 本题考查直线与圆的位置关系,考查分类讨论的数学思想,考查基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=2$\sqrt{3}$sinθ.
(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)若点P的直角坐标为(1,0),圆C与直线l交于A、B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程为ρ-4cosθ=0,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,直线l过点M(3,0),倾斜角为$\frac{π}{6}$.
(1)求曲线C的直角坐标方程与直线l的参数方程;
(2)设直线l与曲线C交于AB两点,求|MA|+|MB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆1千克,则共需油漆的总量(单位:千克)为(  )
A.48+24πB.39+24πC.39+36πD.48+30π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x2-2ln|x|与g(x)=sin(ωx+φ)有两个公共点,则在下列函数中满足条件的周期最大的g(x)=(  )
A.sin(2πx-$\frac{π}{2}$)B.sin($\frac{π}{2}$x-$\frac{π}{2}$)C.sin(πx-$\frac{π}{2}$)D.sin(πx+$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),直线l经过点P(1,1),倾斜角α=$\frac{π}{6}$,
(1)若以直角坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,写出直线l的极坐标方程与参数方程;(2)设l与圆C相交于两点A,B,求点P到A,B两点的距离之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某三棱柱被一个平面截去一部分后所得的几何体的三视图如图所示,其中俯视图是边长为2的正三角形,则截去部分和剩余部分的体积之比为(  )
A.$\frac{10}{33}$B.$\frac{13}{36}$C.$\frac{13}{23}$D.$\frac{23}{33}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,以O为圆心的圆与直线x-$\sqrt{3}$y=4相切,直线l:y=kx+1与圆O交于P、Q两点.
(1)若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=-2,求实数k的值;
(2)过点(0,1)作直线l1与l垂直,且直线l2与圆O交于M,N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2面积的最大值为$\sqrt{3}$.
(1)求椭圆的方程;
(2)已知直线l与椭圆交于点A,B,且直线l的方程为y=kx+$\sqrt{3}$(k>0),若O为坐标原点,求△OAB的面积的最大值.

查看答案和解析>>

同步练习册答案