11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£®
£¨¢ñ£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãPµÄÖ±½Ç×ø±êΪ£¨1£¬0£©£¬Ô²CÓëÖ±Ïßl½»ÓÚA¡¢BÁ½µã£¬Çó|PA|+|PB|µÄÖµ£®

·ÖÎö £¨¢ñ£©°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt¿ÉµÃ£¬ËüµÄÖ±½Ç×ø±ê·½³Ì£»°ÑÔ²CµÄ¼«×ø±ê·½³ÌÒÀ¾Ý»¥»¯¹«Ê½×ª»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©°ÑÖ±Ïßl·½³ÌÓëÔ²CµÄ·½³ÌÁªÁ¢·½³Ì×飬ÇóµÃA¡¢BÁ½µãµÄ×ø±ê£¬¿ÉµÃ|PA|+|PB|µÄÖµ£®

½â´ð ½â£º£¨¢ñ£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃ3x+$\sqrt{3}$y-3=0£®
Ô²CµÄ·½³ÌΪ¦Ñ=2$\sqrt{3}$sin¦È£¬¼´ ¦Ñ2=2$\sqrt{3}$¦Ñsin¦È£¬¼´ x2+y2=2$\sqrt{3}$y£¬¼´ x2+${£¨y-\sqrt{3}£©}^{2}$=3£®
£¨¢ò£©ÓÉ$\left\{\begin{array}{l}{3x+\sqrt{3}y-3=0}\\{{x}^{2}{+£¨y-\sqrt{3}£©}^{2}=3}\end{array}\right.$ÇóµÃ $\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}}\\{y=\sqrt{3}-\frac{3}{2}}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x=-\frac{\sqrt{3}}{2}}\\{y=\sqrt{3}+\frac{3}{2}}\end{array}\right.$£¬
¹Ê¿ÉµÃA£¨$\frac{\sqrt{3}}{2}$£¬$\sqrt{3}$-$\frac{3}{2}$£©¡¢B£¨-$\frac{\sqrt{3}}{2}$£¬$\sqrt{3}$+$\frac{3}{2}$£©£®
¡ßµãP£¨1£¬0£©£¬¡à|PA|+|PB|=$\sqrt{{£¨1-\frac{\sqrt{3}}{2}£©}^{2}{+£¨0-\sqrt{3}+\frac{3}{2}£©}^{2}}$+$\sqrt{{£¨1+\frac{\sqrt{3}}{2}£©}^{2}{+£¨0-\sqrt{3}-\frac{3}{2}£©}^{2}}$=£¨2-$\sqrt{3}$ £©+£¨2+$\sqrt{3}$£©=4£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é²ÎÊý·½³ÌÓë¼«×ø±ê¡¢Ö±½Ç×ø±êµÄ»¥»¯£¬ÇóÁ½ÌõÇúÏߵĽ»µã£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚÖ±ËÄÀâÖùABCD-A1B1C1D1ÖУ¬µ×ÃæABCDΪµÈÑüÌÝÐΣ¬AB¡ÎCD£¬AB=4£¬BC=CD=2£¬AA1=2£¬M¡¢N·Ö±ðÊÇÀâAA1¡¢ADµÄÖе㣬ÉèEÊÇÀâABµÄÖе㣮
£¨1£©ÇóÖ¤£ºMN¡ÎÆ½ÃæCEC1£»£¨2£©ÇóÆ½ÃæD1EC1ÓëÆ½ÃæABCDËù³É½ÇµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈçͼËùʾ£¬DC¡ÍÆ½ÃæBCEF£¬ÇÒËıßÐÎABCDΪ¾ØÐΣ¬ËıßÐÎBCEFΪֱ½ÇÌÝÐΣ¬BF¡ÎCE£¬BC¡ÍCE£¬DC=CE=4£¬BC=BF=2£®
£¨¢ñ£© ÇóÖ¤£ºAF¡ÎÆ½ÃæCDE£»
£¨¢ò£© ÇóÆ½ÃæAEFÓëÆ½ÃæABCDËù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎADCEÖУ¬AD¡ÎEC£¬¡ÏADC=90¡ã£¬AB¡ÍEC£¬AB=EB=1£¬$BC=\sqrt{2}$£®½«¡÷ABEÑØABÕÛµ½¡÷ABE1µÄλÖã¬Ê¹¡ÏBE1C=90¡ã£®M£¬N·Ö±ðΪBE1£¬CDµÄÖе㣮Èçͼ2£®
£¨¢ñ£©ÇóÖ¤£ºMN¡ÎÆ½ÃæADE1£»
£¨¢ò£©ÇóÖ¤£ºAM¡ÍE1C£»
£¨¢ó£©ÇóÆ½ÃæAE1NÓëÆ½ÃæBE1CËù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®°ë¾¶ÎªRµÄÇòOÖÐÓÐÁ½¸ö°ë¾¶·Ö±ðΪ2$\sqrt{3}$Óë2$\sqrt{2}$µÄ½ØÃæÔ²£¬ËüÃÇËùÔ򵀮½Ã滥Ïà´¹Ö±£¬ÇÒÁ½Ô²µÄ¹«¹²ÏÒ³¤ÎªR£¬ÔòR=£¨¡¡¡¡£©
A£®4$\sqrt{3}$B£®5C£®3$\sqrt{3}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èçͼ£¬°ë¾¶ÎªRµÄ°ëÇòOµÄµ×ÃæÔ²OÔÚÆ½Ãæ¦ÁÄÚ£¬¹ýµãO×÷Æ½Ãæ¦ÁµÄ´¹Ïß½»°ëÇòÃæÓÚµãA£¬¹ýÔ²OµÄÖ±¾¶CD×÷ÓëÆ½Ãæ¦Á³É45¡ã½ÇµÄÆ½ÃæÓë°ëÇòÃæÏཻ£¬ËùµÃ½»ÏßÉϵ½Æ½Ãæ¦ÁµÄ¾àÀë×î´óµÄµãΪB£¬¸Ã½»ÏßÉϵÄÒ»µãPÂú×ã¡ÏBOP=60¡ã£¬ÔòA£¬PÁ½µã¼äµÄÇòÃæ¾àÀëΪ$Rarccos\frac{{\sqrt{2}}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¶ÔÓÚº¯Êýf£¨x£©£¬ÔÚ¸ø¶¨Çø¼ä[a£¬b]ÄÚÈÎÈ¡n+1£¨n¡Ý2£¬n¡ÊN*£©¸öÊýx0£¬x1£¬x2£¬¡­£¬xn£¬Ê¹µÃ
a=x0£¼x1£¼x2£¼¡­£¼xn-1£¼xn=b£¬¼ÇS=$\sum_{i=0}^{n-1}$|f£¨xi+1£©-f£¨xi£©|£®Èô´æÔÚÓën¼°xi£¨i¡Ün£¬i¡ÊN£©¾ùÎ޹صÄÕýÊýA£¬Ê¹µÃS¡ÜAºã³ÉÁ¢£¬Ôò³Æf£¨x£©ÔÚÇø¼ä[a£¬b]ÉϾßÓÐÐÔÖÊV£®
£¨1£©Èôº¯Êýf£¨x£©=-2x+1£¬¸ø¶¨Çø¼äΪ[-1£¬1]£¬ÇóSµÄÖµ£»
£¨2£©Èôº¯Êýf£¨x£©=$\frac{x}{{e}^{x}}$£¬¸ø¶¨Çø¼äΪ[0£¬2]£¬ÇóSµÄ×î´óÖµ£»
£¨3£©¶ÔÓÚ¸ø¶¨µÄʵÊýk£¬ÇóÖ¤£ºº¯Êýf£¨x£©=klnx-$\frac{1}{2}$x2 ÔÚÇø¼ä[1£¬e]ÉϾßÓÐÐÔÖÊV£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÓÃÁ½¸öƽÐÐÆ½ÃæÈ¥½Ø°ë¾¶Îª10µÄÇò£¬Á½½ØÃæµÄ°ë¾¶·Ö±ðΪ6ºÍ8£¬ÔòÁ½½ØÃæÖ®¼äµÄ¾àÀëÊÇ2»ò14£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÔ²E£º£¨x-1£©2+y2=4£¬Ïß¶ÎAB¡¢CD¶¼ÊÇÔ²EµÄÏÒ£¬ÇÒABÓëCD´¹Ö±ÇÒÏཻÓÚ×ø±êÔ­µãO£¬ÈçͼËùʾ£¬Éè¡÷AOCµÄÃæ»ýΪS1£¬Éè¡÷BODµÄÃæ»ýΪS2£»
£¨1£©ÉèµãAµÄºá×ø±êΪx1£¬ÓÃx1±íʾ|OA|£»
£¨2£©ÇóÖ¤£º|OA|•|OB|Ϊ¶¨Öµ£»
£¨3£©ÓÃ|OA|¡¢|OB|¡¢|OC|¡¢|OD|±íʾ³öS1+S2£¬ÊÔÑо¿S1+S2ÊÇ·ñÓÐ×îСֵ£¬Èç¹ûÓУ¬Çó³ö×îСֵ£¬²¢Ð´³ö´ËʱֱÏßABµÄ·½³Ì£»ÈôûÓÐ×îСֵ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸