精英家教网 > 高中数学 > 题目详情
16.如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A,P两点间的球面距离为$Rarccos\frac{{\sqrt{2}}}{4}$.

分析 由题意求出AP的距离,然后求出∠AOP,即可求解A、P两点间的球面距离.

解答 解:半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,所以CD⊥平面AOB,
因为∠BOP=60°,所以△OPB为正三角形,P到BO的距离为PE=$\frac{\sqrt{3}}{2}$R,
E为BO的中点,AE=$\sqrt{{R}^{2}+\frac{{R}^{2}}{4}-2•R•\frac{R}{2}cos45°}$=$\sqrt{\frac{5-2\sqrt{2}}{4}}$R,
AP=$\sqrt{(\frac{\sqrt{3}}{2}R)^{2}+(\sqrt{\frac{5-2\sqrt{2}}{4}}R)^{2}}$=$\frac{\sqrt{8-2\sqrt{2}}}{2}$R,
AP2=OP2+OA2-2OP•OAcos∠AOP,
∴($\frac{\sqrt{8-2\sqrt{2}}}{2}$R)2=R2+R2-2R•Rcos∠AOP,
∴cos∠AOP=$\frac{\sqrt{2}}{4}$,∠AOP=arccos$\frac{\sqrt{2}}{4}$,
∴A、P两点间的球面距离为$Rarccos\frac{{\sqrt{2}}}{4}$.
故答案为:$Rarccos\frac{{\sqrt{2}}}{4}$.

点评 本题考查反三角函数的运用,球面距离及相关计算,考查计算能力以及空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知矩阵A=$[\begin{array}{l}1\\-1\end{array}\right._{\;}^{\;}\left.\begin{array}{l}2\\ 4\end{array}]$,求矩阵A的特征值和特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥B-ACDE中,AE⊥平面ABC,CD∥AE,∠ABC=3∠BAC=90°,BF⊥AC于F,AC=4CD=4,AE=3.
(I)求证:BE⊥DF;
(II)求二面角B-DE-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱柱ABC-A1B1C1中,已知AA1=AB=AC,BC=$\sqrt{2}$AB,且AA1⊥平面ABC,点M、Q分别是BC、CC1的中点,点P是棱A1B1上的任一点.
(1)求证:AQ⊥MP;
(2)若平面ACC1A1与平面AMP所成的锐角二面角为θ,且cosθ=$\frac{2}{3}$,试确定点P在棱A1B1上的位置,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=2$\sqrt{3}$sinθ.
(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)若点P的直角坐标为(1,0),圆C与直线l交于A、B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某电子设备的锁屏图案设计的如图1所示,屏幕解锁图案的设计规划如下:从九个点中选择一个点为起点,手指依次划过某些点(点的个数在1到9个之间)就形成了一个路线图(线上的点只有首次被划到时才起到确定线路的作用,即第二次划过的点不会成为确定折线的点,如图1中的点P,线段AB尽管过P,但是由A、B两点确定),这个线路图就形成了一个屏幕解锁图案,则图2所给线路图中可以成为屏幕解锁图案的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,E是矩形ABCD中AD边上的点,F是CD上的点,AB=AE=$\frac{2}{3}$AD=4,现将△ABE沿BE边折至△PBE位置,并使平面PBE⊥平面BCDE,且平面PBE⊥平面PEF.
(1)求$\frac{DF}{FC}$的比值;
(2)求二面角E-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设G是一个非空集合,*是定义在G上的一个运算,如果满足下述四个条件
(1)对于?a,b∈G,都有a*b∈G;
(2)对于?a,b,c∈G,都有(a*b)*c=a*(b*c);
(3)对于?a∈G,?e∈G,使得 a*e=e*a=a;
(4)对于?a∈G,?a′∈G,使得 a*a′=a′*a=e
则称G关于运算*构成一个群.现给出下列集合和运箅
①G是整数集合,*为加法;②G是奇数集合,*为乘法;③G是平面向量集合,*为数量积运算;④G是非零复数集合,*为乘法,其中G关于运算*构成群的序号是①④(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),直线l经过点P(1,1),倾斜角α=$\frac{π}{6}$,
(1)若以直角坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,写出直线l的极坐标方程与参数方程;(2)设l与圆C相交于两点A,B,求点P到A,B两点的距离之和.

查看答案和解析>>

同步练习册答案