分析 (1)以D为原点,DE为x轴,DC为y轴,过D作平面BCDE的垂线为z轴,建立空间直角坐标系,利用向量法能求出$\frac{DF}{FC}$的比值.
(2)求出平面PBC的法向量和平面PBE的法向量,利用向量法能求出二面角E-PB-C的余弦值.
解答
解:(1)以D为原点,DE为x轴,DC为y轴,过D作平面BCDE的垂线为z轴,
建立空间直角坐标系,
P(4,2,2$\sqrt{2}$),B(6,4,0),E(2,0,0),设F(0,t,0),
$\overrightarrow{PB}$=(2,2,-2$\sqrt{2}$),$\overrightarrow{PE}$=(-2,-2,-2$\sqrt{2}$),$\overrightarrow{PF}$=(-4,t-2,-2$\sqrt{2}$),
设平面PBE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=2x+2y-2\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{PE}=-2x-2y-2\sqrt{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,0),
设平面PEF的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PE}=-2a-2b-2\sqrt{2}c=0}\\{\overrightarrow{m}•\overrightarrow{PF}=-4a+(t-2)b-2\sqrt{2}c=0}\end{array}\right.$,取b=2,得$\overrightarrow{m}$=(t,2,-$\frac{t+2}{\sqrt{2}}$),
∵平面PBE⊥平面PEF,
∴$\overrightarrow{n}•\overrightarrow{m}$=t-2=0,解得t=2.
∴DF=2,FC=4-2=2,
∴$\frac{DF}{FC}$=1.
(2)C(0,4,0),$\overrightarrow{PB}$=(2,2,-2$\sqrt{2}$),$\overrightarrow{PC}$=(-4,2,-2$\sqrt{2}$),
设平面PBC的法向量$\overrightarrow{p}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{PB}=2x+2y-2\sqrt{2}z=0}\\{\overrightarrow{p}•\overrightarrow{PC}=-4x+2y-2\sqrt{2}z=0}\end{array}\right.$,取y=$\sqrt{2}$,得$\overrightarrow{p}$=(0,$\sqrt{2}$,1),
由(1)得平面PBE的法向量$\overrightarrow{n}$=(1,-1,0),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-\sqrt{2}}{\sqrt{3}•\sqrt{2}}$=-$\frac{\sqrt{3}}{3}$,
由图形得二面角E-PB-C的平面角为锐角,
∴二面角E-PB-C的余弦值为$\frac{\sqrt{3}}{3}$.
点评 本题考查两线段比值的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 10 | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com