精英家教网 > 高中数学 > 题目详情
5.设G是一个非空集合,*是定义在G上的一个运算,如果满足下述四个条件
(1)对于?a,b∈G,都有a*b∈G;
(2)对于?a,b,c∈G,都有(a*b)*c=a*(b*c);
(3)对于?a∈G,?e∈G,使得 a*e=e*a=a;
(4)对于?a∈G,?a′∈G,使得 a*a′=a′*a=e
则称G关于运算*构成一个群.现给出下列集合和运箅
①G是整数集合,*为加法;②G是奇数集合,*为乘法;③G是平面向量集合,*为数量积运算;④G是非零复数集合,*为乘法,其中G关于运算*构成群的序号是①④(将你认为正确的序号都填上).

分析 逐一检验给出的集合与运算是否满足运算*构成群的定义中的两个条件,即可得出结论.

解答 解:①若G是整数集合,
则(i)两个整数相加仍为整数;(ⅱ)整数加法满足结合律;( iii)?0∈G,?a∈G,则)0+a=a+0=a;( iv)?a∈G,在整数集合中存在唯一一个b=-a,使a+(-a)=(-a)+a=0;
故整数集合关于运算*构成一个群;
②G是奇数集合,*为乘法,则e=1,不满足( iv);
③G是平面向量集合,*为数量积运算,则不满足(i)a*b∈G;
④G是非零复数集合,*为乘法,
则(i)两个非零复数相乘仍为非零复数;(ⅱ)非零复数相乘符合结合律;( iii)?1∈G,?a∈G,则)1×a=a×1=a;( iv)?a∈G,在G中存在唯一一个 $\frac{1}{a}$,使a×$\frac{1}{a}$=$\frac{1}{a}$×a=1.
故答案为:①④.

点评 本题考查运算*构成群的定义,举反例可以证明命题为假,若证明命题为真,则需严格的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′-EC-B是直二面角.
(1)证明:BE⊥CD′;
(2)求二面角D′-BC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作与平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A,P两点间的球面距离为$Rarccos\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数y=f(x)的图象关于直线x=1对称,当0<x≤1时,f(x)=log${\;}_{\frac{1}{2}}$x,则方程f(x)-1=0在(0,6)内的零点之和为(  )
A.8B.10C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用两个平行平面去截半径为10的球,两截面的半径分别为6和8,则两截面之间的距离是2或14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示的某几何体的三视图,则该几何体的体积为(  )

A.2B.3C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个几何体的三视图如图所示,则该几何体的体积为16+π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,一款儿童玩具的三视图中俯视图是以3为半径的圆,则该儿童玩具的体积为54π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.我市某大型企业2009年至2015年销售额y(单位:亿元)的数据如表所示:
年份2009201020112012201320142015
代号t1234567
销售额y27313541495662
(1)画出年份代号与销售额的散点图;

(2)求y关于t的线性回归方程,相关数据保留两位小数;
(3)利用所求回归方程,说出2009年至2015年该大型企业销售额的变化情况,并预测该企业2016年的销售额,相关数据保留两位小数.
附:回归直线的斜率的最小二乘法估计公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t)^{2}}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$.

查看答案和解析>>

同步练习册答案