精英家教网 > 高中数学 > 题目详情
10.如图所示的某几何体的三视图,则该几何体的体积为(  )

A.2B.3C.$\frac{16}{3}$D.6

分析 由三视图可知:该几何体为四棱锥P-ABCD,其中侧面PAB⊥底面ABCD,侧面PAD⊥底面ABCD.利用体积计算公式即可得出.

解答 .解:由三视图可知:该几何体为四棱锥P-ABCD,
其中侧面PAB⊥底面ABCD,侧面PAD⊥底面ABCD
∴V=$\frac{1}{3}$×$\frac{1+2}{2}×2$×2=2.
故选:A.

点评 本题考查了三视图的有关计算、四棱锥的体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在直角梯形ABCD中,AB⊥AD,AB=AD=2,CD=4,点E为CD中点,将三角形ABD沿BD翻折.
(Ⅰ) 证明:在翻折过程中,始终有AE⊥BD;
(Ⅱ) 当$AC=2\sqrt{3}$时,求二面角A-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某电子设备的锁屏图案设计的如图1所示,屏幕解锁图案的设计规划如下:从九个点中选择一个点为起点,手指依次划过某些点(点的个数在1到9个之间)就形成了一个路线图(线上的点只有首次被划到时才起到确定线路的作用,即第二次划过的点不会成为确定折线的点,如图1中的点P,线段AB尽管过P,但是由A、B两点确定),这个线路图就形成了一个屏幕解锁图案,则图2所给线路图中可以成为屏幕解锁图案的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.今年春节黄金周,记者通过随机询问某景区110游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意(单位:名).
总计
满意503080
不满意102030
总计6050110
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(1)从这50名女游客中对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)根据以上列表,问有多大把握认为“游客性别与对景区的服务满意”有关.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设G是一个非空集合,*是定义在G上的一个运算,如果满足下述四个条件
(1)对于?a,b∈G,都有a*b∈G;
(2)对于?a,b,c∈G,都有(a*b)*c=a*(b*c);
(3)对于?a∈G,?e∈G,使得 a*e=e*a=a;
(4)对于?a∈G,?a′∈G,使得 a*a′=a′*a=e
则称G关于运算*构成一个群.现给出下列集合和运箅
①G是整数集合,*为加法;②G是奇数集合,*为乘法;③G是平面向量集合,*为数量积运算;④G是非零复数集合,*为乘法,其中G关于运算*构成群的序号是①④(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设点P(x,y)是曲线$\frac{|x|}{8}+\frac{|y|}{6}=1$上的动点,EF为圆N:(x-1)2+y2=4的任意一条直径,则$\overrightarrow{PE}•\overrightarrow{PF}$的范围为(  )
A.[$\frac{341}{25}$,77]B.[$\frac{441}{25}$,81]C.[$\sqrt{37}$,77]D.[$\frac{1}{5}$,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如表为某设备维修的工序明细表,其中“紧后工序”是指一个工序完成之后必须进行的下一个工序.
工序代号工序名称或内容紧后工序
A拆卸B,C
B清洗D
C电器检修与安装H
D检查零件E,G
E部件维修或更换F
F部件配合试验G
G部件组装H
H装配与试车
将这个设备维修的工序明细表绘制成工序网络图,如图,那么图中的1,2,3,4表示的工序代号依次为(  )
A.E,F,G,GB.E,G,F,GC.G,E,F,FD.G,F,E,F

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,AC=4,BD=2,且侧棱AA1=3.其中O1为A1C1与B1D1的交点.
(1)求点B1到平面D1AC的距离;
(2)在线段BO1上,是否存在一个点P,使得直线AP与CD1垂直?若存在,求出线段BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知y=$\sqrt{m{x}^{2}+2mx+8}$的定义域为全体实数,求m的范围.

查看答案和解析>>

同步练习册答案