精英家教网 > 高中数学 > 题目详情
18.今年春节黄金周,记者通过随机询问某景区110游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意(单位:名).
总计
满意503080
不满意102030
总计6050110
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(1)从这50名女游客中对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)根据以上列表,问有多大把握认为“游客性别与对景区的服务满意”有关.

分析 (1)由分层抽样的定义求各层人数,
(2)利用公式k2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$求值并查表可得.

解答 解:(1)由题意知,样本中满意的女游客为$\frac{5}{50}$×30=3(名),
不满意的女游客为$\frac{5}{50}$×20=2(名).
(2)假设H0:该景区游客性别与对景区的服务满意无关,则k2应该很小.
根据题目中列联表得:
k2=$\frac{110×(50×20-30×10)2}{80×30×60×50}$=$\frac{539}{72}$≈7.486.
由P(k2≥6.635)=0.010可知:
有99%的把握认为:该景区游客性别与对景区的服务满意有关.

点评 本题考查了分层抽样,及独立性检验,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知圆C1:x2+y2=16和圆C2:(x-7)2+(y-4)2=4,
(1)求过点(4,6)的圆C1的切线方程;
(2)设P为坐标平面上的点,且满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2倍.试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正四棱锥的底面边长为2cm,侧面与底面所成二面角的大小为60°,则该四棱锥的侧面积为8cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任意一点.
(1)求$\frac{y-2}{x-1}$的最大值和最小值;
(2)求x-2y的最大值和最小值;
(3)求(x-1)2+(y-1)2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数y=f(x)的图象关于直线x=1对称,当0<x≤1时,f(x)=log${\;}_{\frac{1}{2}}$x,则方程f(x)-1=0在(0,6)内的零点之和为(  )
A.8B.10C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某空间几何体的三视图如图所示,则该几何体的体积为$\frac{8-π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示的某几何体的三视图,则该几何体的体积为(  )

A.2B.3C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则其表面积为(  )
A.8π+2B.10π+2C.6π+2D.12π+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4(\sqrt{2}π+\sqrt{7})}{3}$B.$\frac{4\sqrt{2}(2+π)}{3}$C.$\frac{4(\sqrt{2}π+2)}{3}$D.$\frac{4(\sqrt{2}π+\sqrt{5})}{3}$

查看答案和解析>>

同步练习册答案