精英家教网 > 高中数学 > 题目详情
15.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′-EC-B是直二面角.
(1)证明:BE⊥CD′;
(2)求二面角D′-BC-E的余弦值.

分析 (1)由已知得BE⊥EC.从而BE⊥面D'EC,由此能证明BE⊥CD'.
(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,则∠D'FM是二面角D'-BC-E的平面角.由此能求出二面角D'-BC-E的余弦值.
法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系.利用向量法能求出二面角D'-BC-E的余弦值.

解答 证明:(1)∵AD=2,AB=1,E是AD的中点,
∴△BAE,△CDE是等腰直角三角形,
∵AB=AE=DE=CD,∠BAE=∠CDE=90°,
∴∠BEC=90°,∴BE⊥EC.
又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC,
∴BE⊥面D'EC,
又CD'?面D'EC,∴BE⊥CD'.…(6分)
解:(2)法一:设M是线段EC的中点,过M作MF⊥BC垂足为F,
连接D'M,D'F,则D'M⊥EC,
∵平面D'EC⊥平面BEC,
∴D'M⊥平面BEC,∴D'M⊥BC,
∴BC⊥平面D′MF,∴D'F⊥BC,
∴∠D'FM是二面角D'-BC-E的平面角.
在Rt△D'MF中,D'M=$\frac{1}{2}EC=\frac{{\sqrt{2}}}{2}$,$MF=\frac{1}{2}AB=\frac{1}{2}$,
∴$D'F=\frac{{\sqrt{3}}}{2}$,
∴二面角D'-BC-E的余弦值为$\frac{{\sqrt{3}}}{3}$.…(12分)
法二:分别以EB,EC所在的直线为x轴、y轴,过E垂直于平面BEC的射线为z轴,
建立如图空间直角坐标系.
则$B(\sqrt{2},0,0)$,$C(0,\sqrt{2},0)$,$D'(0,\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$,
$\overrightarrow{BC}=(-\sqrt{2},\sqrt{2},0),\overrightarrow{D'C}=(0,\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2})$.
设平面BEC的法向量为$\overrightarrow{n_1}=(0,0,1)$,
平面D'BC的法向量为$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{BC}=-\sqrt{2}{x}_{2}+\sqrt{2}{y}_{2}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{{D}^{'}C}=\frac{\sqrt{2}}{2}{y}_{2}-\frac{\sqrt{2}}{2}{z}_{2}=0}\end{array}\right.$,取x2=1,得$\overrightarrow{{n}_{2}}$=(1,1,1),
cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{{n}_{2}}|}$=$\frac{\sqrt{3}}{3}$,
∴二面角D'-BC-E的余弦值为$\frac{{\sqrt{3}}}{3}$.…(12分)

点评 本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-3x-1,其定义域是[-3,2].
(1)求f(x)在其定义域内的极大值和极小值;
(2)若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知矩阵A=$[\begin{array}{l}1\\-1\end{array}\right._{\;}^{\;}\left.\begin{array}{l}2\\ 4\end{array}]$,求矩阵A的特征值和特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在底面为梯形的四棱锥S-ABCD中,已知AD∥BC,∠ASC=60°,∠BAD=135°,AD=DC=$\sqrt{2}$,SA=SC=SD=2,O为AC中点.
(Ⅰ)求证:SO⊥平面ABCD;
(Ⅱ)求二面角A-SB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l1:mx-y=0,l2:x+my-2m-2=0.
(1)证明:m取任何实数时,l1和l2的交点总在一个定圆C上;
(2)直线AB与(1)中的圆C相交于A,B两点.
①若弦AB被点P($\frac{1}{2}$,$\frac{1}{2}$)平分,求直线AB的方程;
②若直线AB经过顶点(2,3),求使△ABC的面积取得最大值时的直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直角梯形ABCD中,AB⊥AD,AB=AD=2,CD=4,点E为CD中点,将三角形ABD沿BD翻折.
(Ⅰ) 证明:在翻折过程中,始终有AE⊥BD;
(Ⅱ) 当$AC=2\sqrt{3}$时,求二面角A-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥B-ACDE中,AE⊥平面ABC,CD∥AE,∠ABC=3∠BAC=90°,BF⊥AC于F,AC=4CD=4,AE=3.
(I)求证:BE⊥DF;
(II)求二面角B-DE-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱柱ABC-A1B1C1中,已知AA1=AB=AC,BC=$\sqrt{2}$AB,且AA1⊥平面ABC,点M、Q分别是BC、CC1的中点,点P是棱A1B1上的任一点.
(1)求证:AQ⊥MP;
(2)若平面ACC1A1与平面AMP所成的锐角二面角为θ,且cosθ=$\frac{2}{3}$,试确定点P在棱A1B1上的位置,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设G是一个非空集合,*是定义在G上的一个运算,如果满足下述四个条件
(1)对于?a,b∈G,都有a*b∈G;
(2)对于?a,b,c∈G,都有(a*b)*c=a*(b*c);
(3)对于?a∈G,?e∈G,使得 a*e=e*a=a;
(4)对于?a∈G,?a′∈G,使得 a*a′=a′*a=e
则称G关于运算*构成一个群.现给出下列集合和运箅
①G是整数集合,*为加法;②G是奇数集合,*为乘法;③G是平面向量集合,*为数量积运算;④G是非零复数集合,*为乘法,其中G关于运算*构成群的序号是①④(将你认为正确的序号都填上).

查看答案和解析>>

同步练习册答案