精英家教网 > 高中数学 > 题目详情
3.如图,在底面为梯形的四棱锥S-ABCD中,已知AD∥BC,∠ASC=60°,∠BAD=135°,AD=DC=$\sqrt{2}$,SA=SC=SD=2,O为AC中点.
(Ⅰ)求证:SO⊥平面ABCD;
(Ⅱ)求二面角A-SB-C的余弦值.

分析 (Ⅰ)推导出△ASC为正三角形,且AC=2,OS=$\sqrt{3}$,$∠ADC=\frac{π}{2}$,且OD=1,SO⊥OD,由此能证明SO⊥平面ABCD.
(Ⅱ)以O为原点,分别以OE,OC,OS所成直线为x,y,z轴,建立空间直角坐标系,由此能求出二面角A-SB-C的余弦值.

解答 证明:(Ⅰ)∵在△ASC中,SA=SC,∠ASC=$\frac{π}{3}$,O为AC中点,
∴△ASC为正三角形,且AC=2,OS=$\sqrt{3}$,
∵在△ADC中,DA2+DC2=4=AC2,O为AC中点,
∴$∠ADC=\frac{π}{2}$,且OD=1,
∵在△SOD中,OS2+OD2=SD2
∴△SOD为直角三角形,且$∠SOD=\frac{π}{2}$,
∴SO⊥OD,
又∵SO⊥AC,且AC∩OD=O,
∴SO⊥平面ABCD.
解:(Ⅱ)如图,设直线DO与BC交于点E,则OE、OC、OS两两垂直,
以O为原点,分别以OE,OC,OS所成直线为x,y,z轴,建立空间直角坐标系,
由(Ⅰ)知∠DAC=45°,且∠BAD=135°,
∴∠BAC=90°,∴AB∥x轴,
又∵在△ABC中,AB=2,
∴A(0,-1,0),B(2,-1,0),C(0,1,0),S(0,0,$\sqrt{3}$),
$\overrightarrow{AB}$=(2,0,0),$\overrightarrow{AS}$=(0,1,$\sqrt{3}$),$\overrightarrow{SB}$=(2,-1,-$\sqrt{3}$),$\overrightarrow{SC}$=(0,1,-$\sqrt{3}$),
设平面ABS的一个法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=2x=0}\\{\overrightarrow{m}•\overrightarrow{AS}=y+\sqrt{3}z=0}\end{array}\right.$,令z=-1,得$\overrightarrow{m}$=(0,$\sqrt{3}$,-1),|$\overrightarrow{m}$|=2,
设平面SBC的法向量$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{SB}=2a-b-\sqrt{3}c=0}\\{\overrightarrow{n}•\overrightarrow{SC}=b-\sqrt{3}c=0}\end{array}\right.$,取a=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},\sqrt{3},1$),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3-1}{2×\sqrt{7}}$=$\frac{\sqrt{7}}{7}$,
∴二面角A-SB-C的余弦值是$\frac{\sqrt{7}}{7}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知f(x)=x2,g(x)=$(\frac{1}{2})^x}$-m,若对?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2),则m的取值范围为(  )
A.$[{\frac{1}{2},+∞})$B.$[{\frac{1}{4},+∞})$C.$({-∞,\frac{1}{2}}]$D.$({-∞,\frac{1}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示的几何体中,四边形ABCD为平行四边形,∠ABC=45°,AB=AC=AE=2EF,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.
(1)若M是线段AD的中点,求证:GM∥平面ABFE;
(2)求二面角A-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2$\sqrt{3}$,M为AB的中点.
(1)求证:AC⊥SB;
(2)求二面角S-CM-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=$\sqrt{2}$,AB=CC1=2,∠BCC1=$\frac{π}{4}$,点E在棱BB1上.
(1)求C1B的长,并证明C1B⊥平面ABC;
(2)若BE=λBB1,试确定λ的值,使得二面角A-C1E-C的余弦值为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知圆C1:x2+y2=16和圆C2:(x-7)2+(y-4)2=4,
(1)求过点(4,6)的圆C1的切线方程;
(2)设P为坐标平面上的点,且满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2倍.试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′-EC-B是直二面角.
(1)证明:BE⊥CD′;
(2)求二面角D′-BC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,CD⊥平面PAD,AB∥CD,AD⊥PA,△ADC、△PAD均为等腰三角形,AD=4AB=4,M为线段CP上一点,且$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1).
(1)若λ=$\frac{1}{4}$,求证:MB∥平面PAD;
(2)若λ=$\frac{1}{8}$,求二面角C-AB-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数y=f(x)的图象关于直线x=1对称,当0<x≤1时,f(x)=log${\;}_{\frac{1}{2}}$x,则方程f(x)-1=0在(0,6)内的零点之和为(  )
A.8B.10C.12D.16

查看答案和解析>>

同步练习册答案