分析 (1)根据线面平行的判定定理即可证明;
(2)建立空间坐标系,求出平面的法向量,利用向量法即可.
解答
解:(1)在PD上取一点E,使PE=$\frac{1}{4}$PD,
∵$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1).且λ=$\frac{1}{4}$,
∴ME∥CD,且ME=$\frac{1}{4}$CD,
∵AB∥CD,且AB=$\frac{1}{4}$CD,
∴ME∥AB,ME=AB,
则四边形ABME是平行四边形,
∴MB∥AE,
∵AE?平面PAD,MB?平面PAD,
∴MB∥平面PAD.
(2)建立空间坐标系如图:
则A(0,0,0),C(4,0,4),B(0,0,1),M($\frac{1}{2}$,$\frac{7}{2}$,$\frac{1}{2}$),
$\overrightarrow{AB}$=(0,0,1),$\overrightarrow{AM}$=($\frac{1}{2}$,$\frac{7}{2}$,$\frac{1}{2}$),
设平面ABM的一个法向量为$\overrightarrow{n}$=(x,y,z),
则由$\left\{\begin{array}{l}{\overrightarrow{n•}\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{AM}=0}\end{array}\right.$得$\left\{\begin{array}{l}{z=0}\\{\frac{1}{2}x+\frac{7}{2}y+\frac{1}{2}z=0}\end{array}\right.$,令y=1,则$\overrightarrow{n}$=(-7,1,0),
∵AP⊥平面ABC,
∴平面ABC的法向量为$\overrightarrow{m}$=(0,1,0),
则cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{1×1}{1×\sqrt{{7}^{2}+{1}^{2}}}$=$\frac{2}{\sqrt{50}}$=$\frac{\sqrt{2}}{10}$,
∴二面角C-AB-M的余弦值是$\frac{\sqrt{2}}{10}$.
点评 本题主要考查线面平行的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 工序代号 | 工序名称或内容 | 紧后工序 |
| A | 拆卸 | B,C |
| B | 清洗 | D |
| C | 电器检修与安装 | H |
| D | 检查零件 | E,G |
| E | 部件维修或更换 | F |
| F | 部件配合试验 | G |
| G | 部件组装 | H |
| H | 装配与试车 |
| A. | E,F,G,G | B. | E,G,F,G | C. | G,E,F,F | D. | G,F,E,F |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com