精英家教网 > 高中数学 > 题目详情
17.已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PA=AD,点E为AB中点,点F在线段PD上,且PF:FD=1:3.
(1)证明平面PED⊥平面FAB;
(2)求二面角P-AB-F的平面角的余弦值.

分析 (1)连结BD,推导出△ADB为等边三角形,从而AB⊥DE,由线面垂直得AB⊥PD,由此能证明AB⊥面PED,从而平面PED⊥平面FAB.
(2)由线面垂直得AB⊥PE,连结EF,则AB⊥PE,∠PEF为二面角P-AB-F的平面角,由此能求出二面角P-AB-F的平面角的余弦值.

解答 证明:(1)连结BD,
∵AB=AD,∠DAB=60°,∴△ADB为等边三角形,
∵E是AB中点,∴AB⊥DE,
∵PD⊥面ABCD,AB?面ABCD,∴AB⊥PD,
∵DE?面PED,PD?面PED,DE∩PD=D,
∴AB⊥面PED,
∵AB?平面FAB,∴平面PED⊥平面FAB.
解:(2)∵AB⊥平面PED,PE?面PED,∴AB⊥PE,
连结EF,∵EF?面PED,∴AB⊥PE,
∴∠PEF为二面角P-AB-F的平面角,
设AD=4,则PF=1,FD=3,DE=2$\sqrt{3}$,
在△PEF中,PE=2$\sqrt{7}$,EF=$\sqrt{21}$,PF=1,
∴cos∠PEF=$\frac{(2\sqrt{7})^{2}+(\sqrt{21})^{2}-{1}^{2}}{2×2\sqrt{7}×\sqrt{21}}$=$\frac{4\sqrt{3}}{7}$,
∴二面角P-AB-F的平面角的余弦值为$\frac{4\sqrt{3}}{7}$.

点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设平面内有△ABC,且P表示这个平面内的动点,则属于集合{P|PA=PB}∩{P|PA=PC}的点是(  )
A.△ABC的重心B.△ABC的内心C.△ABC的外心D.△ABC的垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知圆C1:x2+y2=16和圆C2:(x-7)2+(y-4)2=4,
(1)求过点(4,6)的圆C1的切线方程;
(2)设P为坐标平面上的点,且满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长是直线l2被圆C2截得的弦长的2倍.试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点,F是PC上的一点.
(1)若PB∥平面AEF,试确定F点位置;
(2)在(1)的条件下,若直线PB与平面PAD所成角的正弦值为$\frac{\sqrt{6}}{4}$,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,CD⊥平面PAD,AB∥CD,AD⊥PA,△ADC、△PAD均为等腰三角形,AD=4AB=4,M为线段CP上一点,且$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1).
(1)若λ=$\frac{1}{4}$,求证:MB∥平面PAD;
(2)若λ=$\frac{1}{8}$,求二面角C-AB-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=$\sqrt{5}$.用向量法解决下列问题:
(Ⅰ)若AC的中点为E,求A1C与DE所成的角;
(Ⅱ)求二面角B1-AC-D1(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正四棱锥的底面边长为2cm,侧面与底面所成二面角的大小为60°,则该四棱锥的侧面积为8cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任意一点.
(1)求$\frac{y-2}{x-1}$的最大值和最小值;
(2)求x-2y的最大值和最小值;
(3)求(x-1)2+(y-1)2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则其表面积为(  )
A.8π+2B.10π+2C.6π+2D.12π+2

查看答案和解析>>

同步练习册答案