精英家教网 > 高中数学 > 题目详情
5.如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点,F是PC上的一点.
(1)若PB∥平面AEF,试确定F点位置;
(2)在(1)的条件下,若直线PB与平面PAD所成角的正弦值为$\frac{\sqrt{6}}{4}$,求二面角E-AF-C的余弦值.

分析 (1)连结AF,EF,推导出PB∥EF,由E是BC的中点,能证明F为PC的中点.
(2)推导△ABC为正三角形,AE⊥BC,AE⊥AD,以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,利用向量法能求出二面角的余弦值.

解答 解:(1)连结AF,EF,
∵PB∥平面AEF,PB?平面PBC,平面PBC∩平面AEF=EF,
∴PB∥EF.
又在△PBC中,E是BC的中点,
∴F为PC的中点.…(4分)
(2)∵四边形ABCD为菱形,∠ABC=60°,
∴△ABC为正三角形.∵E为BC的中点,∴AE⊥BC.
又BC∥AD,∴AE⊥AD.
∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE.所以AE,AD,AP两两垂直.(6分)
以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,
设AB=2,AP=a,则A(0,0,0),B($\sqrt{3}$,-1,0),C($\sqrt{3}$,1,0),
D(0,2,0),P(0,0,a),E($\sqrt{3}$,0,0),F($\frac{{\sqrt{3}}}{2},\frac{1}{2},\frac{a}{2}$),
∴$\overrightarrow{PB}$=($\sqrt{3}$,-1,-a),且$\overrightarrow{AE}$=($\sqrt{3}$,0,0)为平面PAD的法向量,
设直线PB与平面PAD所成的角为θ,
由sinθ=|cos<$\overrightarrow{PB}$,$\overrightarrow{AE}$>|=$\frac{{|\overrightarrow{PB}•\overrightarrow{AE}|}}{{|\overrightarrow{PB}|•|\overrightarrow{AE}|}}$=$\frac{3}{{\sqrt{4+{a^2}}\sqrt{3}}}$=$\frac{{\sqrt{6}}}{4}$(8分)
解得a=2 所以?$\overrightarrow{AE}$=($\sqrt{3}$,0,0),?$\overrightarrow{AF}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$,1)
设平面AEF的一法向量为$\overrightarrow m$=(x1,y1,z1),
则$\left\{\begin{array}{l}\overrightarrow m•\overrightarrow{AE}=0\\ \overrightarrow m•\overrightarrow{AF}=0\end{array}\right.$,因此$\left\{\begin{array}{l}\sqrt{3}{x_1}=0\\ \frac{{\sqrt{3}}}{2}{x_1}+\frac{1}{2}{y_1}+{z_1}=0\end{array}\right.$,
取z1=-1,则$\overrightarrow m$=(0,2,-1),(10分)
∵BD⊥AC,BD⊥PA,PA∩AC=A,
∴BD⊥平面AFC,∴$\overrightarrow{BD}$为平面AFC的一法向量.
又$\overrightarrow{BD}$=(-$\sqrt{3}$,3,0),
∴cos<$\overrightarrow m$,$\overrightarrow{BD}$>=$\frac{{\overrightarrow m•\overrightarrow{BD}}}{{|\overrightarrow m|•\overrightarrow{BD}}}=\frac{2×3}{{\sqrt{5}×\sqrt{12}}}=\frac{{\sqrt{15}}}{5}$.
∵二面角E-AF-C为锐角,∴所求二面角的余弦值为$\frac{{\sqrt{15}}}{5}$.(12分)

点评 本题考查满足条件的点的位置的确定,考查二面角的余弦值的求法,是中档题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,设角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$sinA+cosA=2,a=3,C=$\frac{5π}{12}$,则b=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC.
(2)求证:平面MOC⊥平面VAB.
(3)求二面角C-VB-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面ABCD为直角梯形,AD∥BC,且BC=$\frac{1}{2}$AD=1,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为等边三角形,M是棱PC上的一点,设$\frac{PM}{MC}$=k(M与C不重合)
(Ⅰ)求证:CD⊥DP;
(Ⅱ)若PA∥平面BME,求k的值;
(Ⅲ)若二面角M-BE-A的平面角为150°,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直角梯形ABCD中,AB⊥AD,AB=AD=2,CD=4,点E为CD中点,将三角形ABD沿BD翻折.
(Ⅰ) 证明:在翻折过程中,始终有AE⊥BD;
(Ⅱ) 当$AC=2\sqrt{3}$时,求二面角A-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)若AE=2-$\sqrt{3}$,求二面角D1-EC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四棱锥P-ABCD,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PA=AD,点E为AB中点,点F在线段PD上,且PF:FD=1:3.
(1)证明平面PED⊥平面FAB;
(2)求二面角P-AB-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀.当他们被问到谁得到了优秀时,丙说:“甲没有得优秀”;乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是丙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设点P(x,y)是曲线$\frac{|x|}{8}+\frac{|y|}{6}=1$上的动点,EF为圆N:(x-1)2+y2=4的任意一条直径,则$\overrightarrow{PE}•\overrightarrow{PF}$的范围为(  )
A.[$\frac{341}{25}$,77]B.[$\frac{441}{25}$,81]C.[$\sqrt{37}$,77]D.[$\frac{1}{5}$,5]

查看答案和解析>>

同步练习册答案