【题目】已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.
(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.
【答案】(1)见解析 (2)
【解析】
(1)根据题意,在△AOC中,AC=a=2,AO=CO=,
所以AC2=AO2+CO2,所以AO⊥CO.
又AO⊥BD,BD∩CO=O,
所以AO⊥平面BCD.
(2)折叠后,BD⊥AO,BD⊥CO.所以∠AOC是二面角A-BD-C的平面角,即∠AOC=120°.在△AOC中,AO=CO=,所以AC=.
如图,过点A作CO的垂线交CO延长线于点H,
因为BD⊥CO,BD⊥AO,且CO∩AO=O,所以BD⊥平面AOC.因为AH平面AOC,所以BD⊥AH.
又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.所以AH⊥BC.过点A作AK⊥BC,垂足为K,连接HK,因为BC⊥AH,AK∩AH=A,所以BC⊥平面AHK.因为HK平面AHK,所以BC⊥HK.所以∠AKH为二面角A-BC-D的平面角.
在△AOH中,得AH=,OH=,所以CH=CO+OH=+=.
在Rt△CHK中,HK==,
在Rt△AHK中,tan∠AKH===.
所以二面角A-BC-D的正切值为.
科目:高中数学 来源: 题型:
【题目】个人排成一排,在下列情况下,各有多少种不同排法?
(1)甲不在两端;
(2)甲、乙、丙三个必须在一起;
(3)甲、乙必须在一起,且甲、乙都不能与丙相邻.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,F为x轴正半轴上的一个动点.以F为焦点、O为顶点作抛物线C.设P为第一象限内抛物线C上的一点,Q为x轴负半轴上一点,使得PQ为抛物线C的切线,且.圆C1、C2均与直线OP切于点P,且均与x轴相切.求点F的坐标,使圆C1与C2的面积之和取到最小值,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:
注:尺寸数据在内的零件为合格品,频率作为概率.
(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;
(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;
(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中.
(Ⅰ) 判断函数在上的单调性;
(Ⅱ) 设函数的定义域为,且有极值点.
(ⅰ) 试判断当时, 是否满足题目的条件,并说明理由;
(ⅱ) 设函数的极小值点为,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1千多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑指四个面均为直角三角形的四面体.如图,在堑堵中,.
(1)求证:四棱锥为阳马;并判断四面体是否为鳖臑,若是,请写出各个面的直角(要求写出结论).
(2)若,当阳马体积最大时,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com