精英家教网 > 高中数学 > 题目详情

【题目】已知正方形ABCD的边长为2,ACBD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.

(1)a=2,求证:AO平面BCD.

(2)当二面角A-BD-C的大小为120°,求二面角A-BC-D的正切值.

【答案】(1)见解析 (2)

【解析】

(1)根据题意,AOC,AC=a=2,AO=CO=,

所以AC2=AO2+CO2,所以AOCO.

AOBD,BDCO=O,

所以AO平面BCD.

(2)折叠后,BDAO,BDCO.所以AOC是二面角A-BD-C的平面角,AOC=120°.AOC,AO=CO=,所以AC=.

如图,过点ACO的垂线交CO延长线于点H,

因为BDCO,BDAO,COAO=O,所以BD平面AOC.因为AH平面AOC,所以BDAH.

COAH,COBD=O,所以AH平面BCD.所以AHBC.过点AAKBC,垂足为K,连接HK,因为BCAH,AKAH=A,所以BC平面AHK.因为HK平面AHK,所以BCHK.所以AKH为二面角A-BC-D的平面角.

AOH,AH=,OH=,所以CH=CO+OH=+=.

RtCHK,HK==,

RtAHK,tanAKH===.

所以二面角A-BC-D的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】个人排成一排,在下列情况下,各有多少种不同排法?

1)甲不在两端;

2)甲、乙、丙三个必须在一起;

3)甲、乙必须在一起,且甲、乙都不能与丙相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量与向量的夹角为,且.

(1)求向量

(2)设向量,向量,其中,若,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,Fx轴正半轴上的一个动点.以F为焦点、O为顶点作抛物线C.设P为第一象限内抛物线C上的一点,Qx轴负半轴上一点,使得PQ为抛物线C的切线,且.C1、C2均与直线OP切于点P,且均与x轴相切.求点F的坐标,使圆C1C2的面积之和取到最小值,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:

注:尺寸数据在内的零件为合格品,频率作为概率.

(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;

(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;

(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,其中.

(Ⅰ) 判断函数上的单调性;

(Ⅱ) 设函数的定义域为,且有极值点.

(ⅰ) 试判断当时, 是否满足题目的条件,并说明理由;

(ⅱ) 设函数的极小值点为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为为参数),直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1千多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑指四个面均为直角三角形的四面体.如图,在堑堵中,.

1)求证:四棱锥为阳马;并判断四面体是否为鳖臑,若是,请写出各个面的直角(要求写出结论).

2)若,当阳马体积最大时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案