精英家教网 > 高中数学 > 题目详情
若θ是第三象限,且cos
θ
2
>0,则
θ
2
是(  )
A、第一象限角
B、第二象限角
C、第三象限角
D、第四象限角
考点:象限角、轴线角
专题:三角函数的求值
分析:由θ是第三象限角,写出角θ的集合,进一步得到
θ
2
的集合,再由cos
θ
2
>0得答案.
解答: 解:∵θ是第三象限角,∴-π+2kπ<θ<-
π
2
+2kπ,得-
π
2
+kπ<
θ
2
<-
π
4
+kπ,k∈Z

则θ为第二或第四象限角,
又cos
θ
2
>0,则
θ
2
是第四象限角.
故选:D.
点评:本题考查了象限角和轴线角,考查了三角函数值的象限符号,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,且其前n项和满足2Sn=an2+an(n∈N*).
(1)证明:数列{an}是等差数列;
(2)设bn=
1
anan+1
,求数列{bn}的前n项和Tn,求证:Tn≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券:
消费金额(元)的范围[188,388](388,588](588,888](888,1188]
获得奖券的金额(元)285888128
根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,然后还能获得对应的奖券金额为28元.于是,该顾客获得的优惠额为:400×0.2+28=108元.设购买商品得到的优惠率=
购买商品获得的优惠额
商品的标价

试问:
(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)当商品的标价为[100,600]元时,试写出顾客得到的优惠率y关于标价x元之间的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,若使输出的结果不大于65,则输入的整数i的最大值为(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

某果园中有60棵橘子树,平均每棵树结200斤橘子.由于市场行情较好,园主准备多种一些橘子树以提高产量,但是若多种树,就会影响果树之间的距离,每棵果树接受到的阳光就会减少,导致每棵果树的产量降低,经验表明:在现有情况下,每多种一棵果树,平均每棵果树都会少结2斤橘子.
(1)如果园主增加种植了10棵橘子树,则总产量增加了多少?
(2)求果园总产量y(斤)与增加种植的橘子树数目x(棵)之间的函数关系式.
(3)增加种植多少棵橘子树可以使得果园的总产量最大?最大总产量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

将下列各分数指数幂写成根式的形式:
(1)0.5
1
2
;(2)65-
3
4
;(3)2.3
2
3
;(4)82-
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,则“a2•c2>b2•c2”是“a2>b2”的
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-6x-7=0与抛物线C:y2=2px(p>0)的准线相切
(Ⅰ)求抛物线C的方程
(Ⅱ)过抛物线C的焦点F的直线交抛物线于A,B两点,若|AB|=7,求线段AB的中点M到y轴的距离.

查看答案和解析>>

同步练习册答案