分析 (1)利用三角函数间的恒等变换可求得f(x)=2sin(2x+$\frac{π}{3}$),利用函数y=Asin(ωx+φ)的图象变换可求得g(x)=2sinx;
(2)根据余弦定理和正弦函数的性质即可求出.
解答 解:(1)$\overrightarrow{m}$=(1,cos2x),$\overrightarrow{n}$=(sin2x,$\sqrt{3}$),
函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
∵将函数y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
再将所得图象向右平移$\frac{π}{3}$个单位,所得函数图象对应的解析式记为g(x).
∴g(x)=2sinx,
(2)∵a2+c2-b2=ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
∴B=$\frac{π}{3}$,
∵A+B+C=π,
∴A=$\frac{2π}{3}$-C,
∴0<A<$\frac{2π}{3}$,
∴$\frac{π}{3}$<2A+$\frac{π}{3}$<$\frac{5}{3}$π,
∴f(A)=2sin(2A+$\frac{π}{3}$),
∴当2A+$\frac{π}{3}$=$\frac{π}{2}$时,有最大值,最大值为2,
当2A+$\frac{π}{3}$=$\frac{3π}{2}$时,有最小值,最小值为-2.
∴-2≤f(A)≤2.
点评 本题考查二倍角的余弦,考查三角函数间的恒等变换,突出考查函数y=Asin(ωx+φ)的图象变换及与余弦定理,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 20 | C. | 24 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③④ | B. | ②④⑤ | C. | ③④⑤ | D. | ②③⑤ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {7,9} | B. | {0,3,7,9,4,5} | C. | {5,7,9} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com