精英家教网 > 高中数学 > 题目详情
已知x=3是函数f(x)=(x2+ax+b)e3-x,(x∈R)的一个极值点.
(Ⅰ)求a与b的关系式(用a表示b),并求f(x)的单调区间;
(Ⅱ)当a>0时,求f(x)在[0,4]上的值域.
分析:(Ⅰ)求出f′(x),因为x=3是函数f(x)的一个极值点得到f′(3)=0即可得到a与b的关系式;令f′(x)=0,得到函数的极值点,用a的范围分两种情况分别用极值点讨论得到函数的单调区间;
(Ⅱ)由(Ⅰ)知,当a>0时,f(x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,得到f(x)在区间[0,4]上的值域.
解答:解:(Ⅰ)f'(x)=(2x+a)e3-x-(x2+ax+b)e3-x=-[x2+(a-2)x+b-a]e3-x
由f'(3)=0得b=-3-2a…3
f'(x)=-(x-3)(x+a+1)e3-x
(1)当-a-1>3,即a<-4时,
令f'(x)>0得3<x<-a-1
令f'(x)<0得x<3或x>-a-1.
(2)当-a-1=3,即a=-4时,f'(x)=-(x-3)2e3-x
由于-(x-3)2≤0,且e3-x>0,
故f'(x)=-(x-3)2e3-x≤0恒成立;
(3)当-a-1<3,即a>-4时,
令f'(x)>0得-a-1<x<3
令f'(x)<0得x<-a-1或x>3,
综上述:
(1)当a<-4时f(x)的单调递增区间为(3,-a-1),递减区间(-∞,3),(-a-1,+∞)
(2)当a>-4时f(x)的单调递增区间为(-a-1,3),递减区间(-∞,-a-1),(3,+∞)
(3)当a=-4时f(x)在(-∞,+∞)上单调递减.…8
(Ⅱ)由(Ⅰ)知,当a>0时,f(x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,
那么f(x)在区间[0,4]上的值域是[min(f(0),f(4)),f(3)],
而f(0)=-(2a+3)e3<0,f(4)=(2a+13)e-1>0,f(3)=a+6,
那么f(x)在区间[0,4]上的值域是[-(2a+3)e3,a+6].
点评:本题主要考查函数、导数在最大值、最小值问题中的应用和导数的应用等知识,考查综合运用数学知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.求:
(I)实数a的值;  
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=3是函数f(x)=(x2+ax-2a-3)e3-x的极值点.
(1)求f(x)的单调区间(用a表示);
(2)设a>0,g(x)=(a2+8)ex,若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市重点中学高三(上)月考数学试卷(解析版) 题型:解答题

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.求:
(I)实数a的值;  
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案