精英家教网 > 高中数学 > 题目详情

(本题满分12分)如图,四棱锥中,底面是边长为4的正方形,的交点,平面是侧棱的中点,异面直线所成角的大小是60.

(Ⅰ)求证:直线平面
(Ⅱ)求直线与平面所成角的正弦值.

(Ⅰ)见解析;(Ⅱ)

解析试题分析:(Ⅰ)连结,……1分四边形是正方形,的中点,…2分
是侧棱的中点,//.又平面平面直线//平面.…………4分
(Ⅱ)所成角为,为等边三角形......5分在中,,建立如图空间坐标系,



…………………7分
设平面的法向量,则有
    解得…………9分
直线与平面所成角记为,则…12分
考点:线面垂直的性质定理;异面直线所成的角;直线与平面所成的角;直线与平面平行的判定定理.
点评:本题考查直线与平面平行的证明及直线与平面所成角的正弦值的求法.解题时要认真审题,仔细解答,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分10分) 如图,P—ABCD是正四棱锥,是正方体,其中 

(1)求证:
(2)求平面PAD与平面所成的锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,在三棱柱中,平面, ,点的中点.

求证:(1);(2)平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,棱柱的侧面是菱形,

(Ⅰ)证明:平面平面
(Ⅱ)设上的点,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF ∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且

(1)求证:平面⊥平面
(2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
(本题满分12分)
如图,已知三棱锥的侧棱两两垂直,
的中点。
(1)求异面直线所成角的余弦值;
(2)求直线BE和平面的所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面和直线,给出条件:
;②;③;④;⑤.
(理)(i)当满足条件          时,有

查看答案和解析>>

同步练习册答案