分析 (I)由${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}(n∈N*)$,变形得$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}=\frac{{{a_n}+{2^n}}}{a_n}=1+\frac{2^n}{a_n}$,利用等差数列的定义即可得出.
(II)利用等差数列的系统公司即可得出.
(III)${b_n}={2^n}+\frac{1}{{n•{2^{n+1}}}}•{a_n}={2^n}+\frac{1}{{n•{2^{n+1}}}}×\frac{2^n}{n+1}={2^n}+\frac{1}{2n(n+1)}$,利用“裂项求和方法”与等比数列的求和公式即可得出.
解答 (I)证明:由${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}(n∈N*)$,变形得$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}=\frac{{{a_n}+{2^n}}}{a_n}=1+\frac{2^n}{a_n}$,即$\frac{{2}^{n+1}}{{a}_{n+1}}$-$\frac{{2}^{n}}{{a}_{n}}$=1.
∴数列$\left\{{\frac{2^n}{a_n}}\right\}$是等差数列.
(II)解:由(I)得$\frac{2^n}{a_n}=\frac{2}{a_1}+(n-1)×1$,a1=1,$\frac{2^n}{a_n}=n+1$,
∴${a_n}=\frac{2^n}{n+1}$.
(III)解:${b_n}={2^n}+\frac{1}{{n•{2^{n+1}}}}•{a_n}={2^n}+\frac{1}{{n•{2^{n+1}}}}×\frac{2^n}{n+1}={2^n}+\frac{1}{2n(n+1)}$,
∴${S_n}={b_1}+{b_2}+…+{b_n}=(2+\frac{1}{2×1×2})+({2^2}+\frac{1}{2×2×3})+…+[{2^n}+\frac{1}{2n(n++1)}]$
=$(2+{2^2}+…+{2^n})+\frac{1}{2}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{{2(1-{2^n})}}{1-2}+\frac{1}{2}(1-\frac{1}{n+1})={2^{n+1}}-\frac{1}{2(n+1)}-\frac{3}{2}$.
点评 本题考查了等差数列与等比数列的定义通项公式与求和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.76<l log0.25<60.7 | B. | 0.76<60.7<l log0.25 | ||
| C. | log0.25<60.7<0.76 | D. | log0.25<0.76<60.7 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-4,6) | B. | (-2,6) | C. | (4,6] | D. | (4,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com