精英家教网 > 高中数学 > 题目详情
7.数列{an}满足a1=1,an+1=$\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$(n∈N*).
(Ⅰ)证明:数列{$\frac{2^n}{a_n}}$}是等差数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)设bn=2n+$\frac{1}{{n•{2^{n+1}}}}$•an,求数列{bn}的前n项和Sn

分析 (I)由${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}(n∈N*)$,变形得$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}=\frac{{{a_n}+{2^n}}}{a_n}=1+\frac{2^n}{a_n}$,利用等差数列的定义即可得出.
(II)利用等差数列的系统公司即可得出.
(III)${b_n}={2^n}+\frac{1}{{n•{2^{n+1}}}}•{a_n}={2^n}+\frac{1}{{n•{2^{n+1}}}}×\frac{2^n}{n+1}={2^n}+\frac{1}{2n(n+1)}$,利用“裂项求和方法”与等比数列的求和公式即可得出.

解答 (I)证明:由${a_{n+1}}=\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}(n∈N*)$,变形得$\frac{{{2^{n+1}}}}{{{a_{n+1}}}}=\frac{{{a_n}+{2^n}}}{a_n}=1+\frac{2^n}{a_n}$,即$\frac{{2}^{n+1}}{{a}_{n+1}}$-$\frac{{2}^{n}}{{a}_{n}}$=1.
∴数列$\left\{{\frac{2^n}{a_n}}\right\}$是等差数列.
(II)解:由(I)得$\frac{2^n}{a_n}=\frac{2}{a_1}+(n-1)×1$,a1=1,$\frac{2^n}{a_n}=n+1$,
∴${a_n}=\frac{2^n}{n+1}$.
(III)解:${b_n}={2^n}+\frac{1}{{n•{2^{n+1}}}}•{a_n}={2^n}+\frac{1}{{n•{2^{n+1}}}}×\frac{2^n}{n+1}={2^n}+\frac{1}{2n(n+1)}$,
∴${S_n}={b_1}+{b_2}+…+{b_n}=(2+\frac{1}{2×1×2})+({2^2}+\frac{1}{2×2×3})+…+[{2^n}+\frac{1}{2n(n++1)}]$
=$(2+{2^2}+…+{2^n})+\frac{1}{2}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{{2(1-{2^n})}}{1-2}+\frac{1}{2}(1-\frac{1}{n+1})={2^{n+1}}-\frac{1}{2(n+1)}-\frac{3}{2}$.

点评 本题考查了等差数列与等比数列的定义通项公式与求和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设复数z1=i,z2=1+i,则复数z=z1•z2在复平面内对应的点到原点的距离是(  )
A.1B.$\sqrt{2}$C.2D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出下列四个命题:
①垂直于同一平面的两条直线相互平行;
②平行于同一平面的两条直线相互平行;
③若一条直线平行于一个平面内的无数条直线,那么这条直线平行于这个平面;
④若一条直线垂直于一个平面内的任一条直线,那么这条直线垂直于这个平面
其中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.三个数0.76,60.7,log0.25的大小关系为(  )
A.0.76<l log0.25<60.7B.0.76<60.7<l log0.25
C.log0.25<60.7<0.76D.log0.25<0.76<60.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是$\frac{11}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简求值:
(1)(2$\frac{7}{9}$)0.5+0.1-20+$\frac{1}{3}$;
(2)(xy2•x${\;}^{\frac{1}{2}}$•y${\;}^{-\frac{1}{2}}$)${\;}^{\frac{1}{3}}$•(xy)${\;}^{\frac{1}{2}}$其中x>0,y>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求满足1+3+5+…+n>500的最小自然数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\left\{\begin{array}{l}{x^2}-6x+6\;\;\;x≥0\\ 3x+3\;\;\;\;\;\;\;\;\;\;x<0\end{array}$,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(  )
A.(-4,6)B.(-2,6)C.(4,6]D.(4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列命题:①偶数都可以被2整除;②角平分线上的任一点到这个角的两边的距离相等;③正四棱锥的侧棱长相等;④有的实数是无限不循环小数;⑤有的菱形是正方形;⑥存在三角形其内角和大于180°,既是全称又是真命题的是①②③,即是特称命题又是真命题的是④⑤(填上所有满足要求的序号).

查看答案和解析>>

同步练习册答案