精英家教网 > 高中数学 > 题目详情
19.求满足1+3+5+…+n>500的最小自然数n.

分析 分析题目中的要求,发现这是一个累加型的问题,故可能用循环结构来实现,在编写算法的过程中要注意,累加的初始值为1,累加值每一次增加1,退出循环的条件是累加结果>500,即可得到流程图,进而可得程序.

解答 解:由于1+3+5+…+n=n+n(n-1)=n2>500,可得:n>22.4,
可得:满足1+3+5+…+n>500的最小自然数n为23.
程序框图如下:

程序如下:
i=1;
sum=0;
while  sum<=500
sum=sum+i;
i=i+2;
wend
print“最小自然数n的值为:”;i=i-2
end

点评 本题主要考查了循环结构,以及利用循环语句来实现数值的累加(乘),同时考查了流程图的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{17}$,则双曲线C的渐近线方程为(  )
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}$xD.y=$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\sqrt{({1-x})({x-5})}$,则它的值域为(  )
A.[0,+∞)B.(-∞,4]C.[0,4]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}满足a1=1,an+1=$\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$(n∈N*).
(Ⅰ)证明:数列{$\frac{2^n}{a_n}}$}是等差数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)设bn=2n+$\frac{1}{{n•{2^{n+1}}}}$•an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若定义在R上的偶函数y=f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,函数g(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{x}(x≤0)}\end{array}\right.$,则?x∈[-4,4],方程f(x)=g(x)不同解的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)是定义在(-∞,0)上的可导函数,且有2f(x)+xf′(x)>x2,则不等式$\frac{1}{4}$(x+2015)2f(x+2015)-f(-2)>0的解集(  )
A.(-∞,-2013)B.(-2013,0)C.(-∞,-2017)D.(-2017,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\left\{{\begin{array}{l}{{2^x}-1},{x>0}\\{-{x^2}-2x},{x≤0}\end{array}}$,若方程f(x)-m=0有三个实根,则m的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是增函数,且f(3)=0,则使得f(x+1)>0的x的取值范围是(  )
A.(-2,4)B.(-3,3)C.(-4,2)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点P是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,(a>0,b>0)右支上一点,F1、F2分别是双曲线的左、右焦点,I为△PF1F2的内心,且有S${\;}_{△IP{F_1}}}$-S${\;}_{△IP{F_2}}}$=$\frac{1}{2}$S${\;}_{△I{F_1}{F_2}}}$,则该双曲线的离心率为2.

查看答案和解析>>

同步练习册答案