精英家教网 > 高中数学 > 题目详情
7.已知椭圆x2+2y2=8的两个焦点分别为F1,F2,A为椭圆上的任意一点,AP是∠F1AF2的外角平分线,且$\overrightarrow{AP}•\overrightarrow{{F_2}P}=0$,则点P的坐标一定满足(  )
A.x2+y2=8B.x2+y2=1C.x2-y2=1D.$\frac{x^2}{4}+\frac{y^2}{3}=1$

分析 求出椭圆的标准方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,F1(-2,0),F2(2,0),可设A(0,2),P(x,y),由已知条件求出x=y=2.从而得到点P的坐标一定满足x2+y2=8.

解答 解:∵椭圆x2+2y2=8的两个焦点分别为F1,F2,A为椭圆上的任意一点,
∴椭圆的标准方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,F1(-2,0),F2(2,0),
可设A(0,2),P(x,y),则$\overrightarrow{AP}$=(x,y-2),$\overrightarrow{A{F}_{2}}$=(2,-2),$\overrightarrow{{F}_{1}A}$=(2,2),$\overrightarrow{{F}_{2}P}$=(x-2,y),
∵AP是∠F1AF2的外角平分线,且$\overrightarrow{AP}•\overrightarrow{{F_2}P}=0$,
∴$\overrightarrow{AP}$•$\overrightarrow{{F}_{2}P}$=(x,y-2)•(x-2,y)=x2-2x+y2-2y=0,①
cos<$\overrightarrow{A{F}_{2}},\overrightarrow{AP}$>=cos<$\overrightarrow{{F}_{1}A}$,$\overrightarrow{AP}$>,即$\frac{2x-2y+4}{2\sqrt{2}•\sqrt{{x}^{2}+(y-2)^{2}}}$=$\frac{2x+2y-4}{2\sqrt{2}•\sqrt{{x}^{2}+(y-2)^{2}}}$,②
①②联立,解得x=y=2.
∴点P的坐标一定满足x2+y2=8.
故选:A.

点评 本题考查点的坐标满足的方程的确定的求法,是中档题,解题时要认真审题,注意椭圆、直线的性质的合理运用,注意特殊值法在选择题中的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-a(x-1),g(x)=ex
(Ⅰ)若函数f(x)在区间(0,9]为增函数,求实数a的取值范围;
(Ⅱ)当a≠0时,过原点分别作曲线y=f(x)与y=g(x)的切线l1,l2,已知两切线的斜率互为倒数,证明:$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{sin(\frac{2π}{3}-4x)}{cos(2x+\frac{π}{6})}$的图象与g(x)的图象关于直线x=$\frac{π}{12}$对称,则g(x)的图象的一个对称中心为(  )
A.($\frac{π}{6}$,0)B.($\frac{π}{3}$,0)C.($\frac{π}{4}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知方程$\frac{{x}^{2}}{2+m}$+$\frac{{y}^{2}}{1-m}$=1表示焦点在x轴上的椭圆,则实数m的取值范围为-$\frac{1}{2}$<m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.1934年,来自东印度(今孟加拉国)的学者森德拉姆发现了“正方形筛子”,其数字排列规律与等差数列有关,如图,则“正方形筛子”中,位于第8行第7列的数是127.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设点P为椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{4}=1({a>2})$上一点,F1,F2分别为C的左、右焦点,且∠F1PF2=60°,则△PF1F2的面积为(  )
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.F1、F2是双曲线C的焦点,过F1且与双曲线实轴垂直的直线与双曲线相交于A、B,且△F2AB为正三角形,则双曲线的离心率e=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的表面积为(  )
A.2B.4+2$\sqrt{2}$C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{ax}{x+1}$(a∈R).
(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;
(2)若函数y=f(x)的图象与直线y=2x相切,求a的值.

查看答案和解析>>

同步练习册答案