精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=lnx+$\frac{ax}{x+1}$(a∈R).
(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;
(2)若函数y=f(x)的图象与直线y=2x相切,求a的值.

分析 (1)求出原函数的导函数,由题意可得f′(x)≥对任意x∈(1,4)恒成立,分离参数a,可得-a≤$\frac{(x+1)^{2}}{x}$,利用导数求出函数g(x)=$\frac{(x+1)^{2}}{x}$在(1,4)上的最小值得答案;
(2)设出切点坐标,求出函数在切点处的导数,可得切线斜率,再由两函数在切点处的函数值相等求得a的值.

解答 解:(1)函数f(x)=lnx+$\frac{ax}{x+1}$,
则f′(x)=$\frac{1}{x}+\frac{a}{(x+1)^{2}}$,
∵函数f(x)在区间(1,4)上单调递增,
∴$\frac{1}{x}+\frac{a}{(x+1)^{2}}$≥0在x∈(1,4)上恒成立.
即-a≤$\frac{(x+1)^{2}}{x}$在x∈(1,4)上恒成立.
令g(x)=$\frac{(x+1)^{2}}{x}$,则g′(x)=$\frac{{x}^{2}-1}{{x}^{2}}$.
当x∈(1,3)时,g′(x)>0,当x∈(3,4)时,g′(x)<0.
∴g(x)在(1,3)上为增函数,在(3,4)上为减函数,
∴g(x)min=g(1)=4.
则a≥-4;
(2)设切点坐标为(x0,y0),则f′(x0)=$\frac{1}{{x}_{0}}$+$\frac{a}{({x}_{0}+1)^{2}}$,
则$\frac{1}{{x}_{0}}$+$\frac{a}{({x}_{0}+1)^{2}}$=2
f(x0)=lnx0+$\frac{a{x}_{0}}{{x}_{0}+1}$=2x0,②
联立①,②解得:x0=1,a=4.

点评 本题考查利用导数研究函数的单调性,训练了恒成立问题的求解方法,考查计算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知椭圆x2+2y2=8的两个焦点分别为F1,F2,A为椭圆上的任意一点,AP是∠F1AF2的外角平分线,且$\overrightarrow{AP}•\overrightarrow{{F_2}P}=0$,则点P的坐标一定满足(  )
A.x2+y2=8B.x2+y2=1C.x2-y2=1D.$\frac{x^2}{4}+\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=x2-2x-3,若从区间[-2,4]上任取一个实数x0,则所选取的实数x0满足f(x0)≤0的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若对任意x∈(0,+∞),都有f(x)<2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线y=mx与x2+y2-4x+2=0相切,则m值为(  )
A.±$\sqrt{3}$B.±$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{2}$D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集U=A∪B={1,2,3,4,5},A∩(∁UB)={1,2},则集合B=(  )
A.{2,4,5}B.{3,4,5}C.{4,5}D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x2-sin|x|在[-2,2]上的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若点P是△ABC的外心,且$\overrightarrow{PA}$+$\overrightarrow{PB}$+λ$\overrightarrow{PC}$=$\overrightarrow{0}$,∠C=120°,则实数λ的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校举行物理竞赛,有8名男生和12名女生报名参加,将这20名学生的成绩制成茎叶图如图所示,成绩不低于80分的学生获得“优秀奖”,其余获“纪念奖”.
(Ⅰ)求出8名男生的平均成绩和12名女生成绩的中位数;
(Ⅱ)按照获奖类型,用分层抽样的方法从这20名学生中抽取5人,再从选出的5人中任选3人,求恰有1人获“优秀奖”的概率.

查看答案和解析>>

同步练习册答案