精英家教网 > 高中数学 > 题目详情
9.已知直线y=mx与x2+y2-4x+2=0相切,则m值为(  )
A.±$\sqrt{3}$B.±$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{2}$D.±1

分析 化圆的方程为标准方程,求得圆心与半径,利用圆心到直线的距离等于半径,即可求得m的值.

解答 解:圆x2+y2-4x+2=00的标准方程为(x-2)2+y2=2,
∴圆心(2,0),半径为$\sqrt{2}$
∵直线y=mx与x2+y2-4x+2=0相切,
∴$\frac{|2m|}{\sqrt{{m}^{2}+1}}$=$\sqrt{2}$
∴m=1或-1
故选:D.

点评 本题考查直线与圆的位置关系,利用圆心到直线的距离等于半径是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.1934年,来自东印度(今孟加拉国)的学者森德拉姆发现了“正方形筛子”,其数字排列规律与等差数列有关,如图,则“正方形筛子”中,位于第8行第7列的数是127.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={2,4,6,8},B={x|x2-9x+18≤0},则A∩B=(  )
A.{2,4}B.{4,6}C.{6,8}D.{2,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{m}$,$\overrightarrow{n}$为两个非零向量,且|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,则|$\overrightarrow{n}$|+|2$\overrightarrow{m}$+$\overrightarrow{n}$|的最大值为(  )
A.4$\sqrt{2}$B.3$\sqrt{3}$C.$\frac{7\sqrt{3}}{2}$D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题

已知五边形由直角梯形与直角△构成,如图1所示,,且,将梯形沿着折起,形成如图2所示的几何体,且使平面平面

(1)在线段上存在点,且,证明:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{ax}{x+1}$(a∈R).
(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;
(2)若函数y=f(x)的图象与直线y=2x相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设p:2x<1,q:x(x+1)<0,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平面直角坐标系xOy中,过点P(-1,-2)的直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ•sinθ•tanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|=|MN|,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆C:x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为x=3或4x+3y-15=0.

查看答案和解析>>

同步练习册答案