精英家教网 > 高中数学 > 题目详情
18.已知圆C:x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为x=3或4x+3y-15=0.

分析 根据直线和圆相切的等价条件转化为圆心到直线的距离等于半径即可得到结论.

解答 解:圆心坐标为(0,0),半径为3,
∵点P(3,1)在圆外,
∴若直线斜率k不存在,
则直线方程为x=3,圆心到直线的距离为3,满足相切.
若直线斜率存在设为k,
则直线方程为y-1=k(x-3),即kx-y+1-3k=0,
则圆心到直线kx-y+1-3k=0的距离等于半径1,
即d=$\frac{|1-3k|}{\sqrt{{k}^{2}+1}}$=1,
解得k=-$\frac{4}{3}$,此时直线方程为4x+3y-15=0,
综上切线方程为x=3或4x+3y-15=0,
故答案为:x=3或4x+3y-15=0

点评 本题主要考查直线和圆的位置关系的应用,根据相切的等价条件是解决本题的关键.注意讨论直线的斜率是否存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知直线y=mx与x2+y2-4x+2=0相切,则m值为(  )
A.±$\sqrt{3}$B.±$\frac{\sqrt{3}}{3}$C.±$\frac{\sqrt{3}}{2}$D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程$\frac{x^2}{3-k}+\frac{y^2}{k+3}=1$表示椭圆,则k的取值范围是{k|-3<k<3且k≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.$(t为参数,0≤θ<π),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=-4cosα,圆C的圆心到直线l的距离为$\frac{3}{2}$
(1)求θ的值;
(2)已知P(1,0),若直线l与圆C交于A,B两点,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(2x-4)ex+a(x+2)2(x>0,a∈R,e是自然对数的底).
(Ⅰ)若f(x)是(0,+∞)上的单调递增函数,求实数a的取值范围;
(Ⅱ)当$a∈(0,\frac{1}{2})$时,证明:函数f(x)有最小值,并求函数f(x)最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校举行物理竞赛,有8名男生和12名女生报名参加,将这20名学生的成绩制成茎叶图如图所示,成绩不低于80分的学生获得“优秀奖”,其余获“纪念奖”.
(Ⅰ)求出8名男生的平均成绩和12名女生成绩的中位数;
(Ⅱ)按照获奖类型,用分层抽样的方法从这20名学生中抽取5人,再从选出的5人中任选3人,求恰有1人获“优秀奖”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,满足:a1=1,${S_{n+1}}-{S_n}=\frac{3^n}{a_n}(n∈{N^*})$,则该数列的前2017项和S2017=31009-2.

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:填空题

设函数,则当时,的导函数的极小值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足${a_1}=\frac{3}{2}$,an+1=3an-1(n∈N+).
(1)若数列{bn}满足${b_n}={a_n}-\frac{1}{2}$,求证:{bn}是等比数列;
(2)若数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案