精英家教网 > 高中数学 > 题目详情

设函数,则当时,的导函数的极小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知平面直角坐标系xOy中,过点P(-1,-2)的直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ•sinθ•tanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|=|MN|,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆C:x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为x=3或4x+3y-15=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.半径为2的圆C的圆心在第四象限,且与直线x=0和$x+y=2\sqrt{2}$均相切,则该圆的标准方程为(  )
A.(x-1)2+(y+2)2=4B.(x-2)2+(y+2)2=2C.(x-2)2+(y+2)2=4D.(x-2$\sqrt{2}$)2+(y+2$\sqrt{2}$)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.观察下列三角形数表:

假设第n行的第二个数为${a_n}({n≥2,n∈{N^*}})$,
(1)归纳出an+1与an的关系式,并求出an的通项公式;
(2)设anbn=1(n≥2),求证:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知{an}为等差数列,公差为d,且0<d<1,a5≠$\frac{kπ}{2}$(k∈Z),sin2a3+2sina5•cosa5=sin2a7,函数f(x)=dsin(wx+4d)(w>0)满足:在$x∈(0,\frac{3π}{4})$上单调且存在${x_0}∈(0,\frac{3π}{4}),f(x)+f(2{x_0}-x)=0$,则w范围是0<w≤$\frac{4}{3}$..

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:填空题

已知满足约束条件恒成立,则实数的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)完成2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
(2)(i)按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽出9株玉米,设取出的易倒伏矮茎玉米株数为X,求X的分布列(概率用组合数算式表示)
(ii)若将频率视为概率,从抗倒伏的玉米试验田中再随机取出50株,求取出的高茎玉米株数的数学期望和方差
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
( ${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点分别为F1,F2,A为双曲线上的一点,且F1F2⊥AF2,若直线AF1与圆x2+y2=$\frac{{a}^{2}{+b}^{2}}{9}$相切,在双曲线的离心率为$\frac{\sqrt{2}+2\sqrt{6}}{4}$.

查看答案和解析>>

同步练习册答案