分析 (1)利用数列的关系归纳出an+1与an的关系式,利用累加法求解即可.
(2)利用放缩法化简通项公式,通过裂项消项法求解即可.
解答 解:(1)依题意an+1=an+n(n≥2),a2=2,
${a_n}={a_2}+({{a_3}-{a_2}})+({{a_4}-{a_3}})+…+({{a_n}-{a_{n-1}}})=2+2+3+…+({n-1})=2+\frac{{({n-2})({n+1})}}{2}$,
所以${a_n}=\frac{1}{2}{n^2}-\frac{1}{2}n+1({n≥2})$;
(2)因为anbn=1,所以${b_n}=\frac{2}{{{n^2}-n+2}}<\frac{2}{{{n^2}-n}}=2({\frac{1}{n-1}-\frac{1}{n}})$,${b_2}+{b_3}+{b_4}+…+{b_n}<2[{({\frac{1}{1}-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n-1}-\frac{1}{n}})}]=2({1-\frac{1}{n}})<2$.
点评 本题考查数列的应用,放缩法的应用,数列求和以及通项公式的求法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinA)•g(sinB)>f(sinB)•g(sinA) | B. | f(sinA)•g(sinB)<f(sinB)•g(sinA) | ||
| C. | f(cosA)•g(sinB)>f(sinB)•g(cosA) | D. | f(cosA)•g(sinB)<f(sinB)•g(cosA) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 其图象关于直线$x=-\frac{π}{4}$对称 | |
| B. | 其图象可由$y=2sin(x+\frac{π}{4})+1$图象上所有点的横坐标变为原来的$\frac{1}{3}$倍得到 | |
| C. | 其图象关于点$(\frac{11π}{12},0)$对称 | |
| D. | 其值域是[-1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1的焦点到其渐近线距离为$\sqrt{3}$ | |
| B. | 若命题p:?x∈R,使得sinx+cosx≥2,则¬p:?x∈R,都有sinx+cosx<2 | |
| C. | 若p∧q是假命题,则p、q都是假命题 | |
| D. | 设a,b是互不垂直的两条异面直线,则存在唯一平面α,使得a?α,且b∥α |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com