分析 根据题意,由椭圆的标准方程的形式可得$\left\{\begin{array}{l}{3-k>0}\\{k+3>0}\\{3-k≠k+3}\end{array}\right.$,解可得k的取值范围,即可得答案.
解答 解:根据题意,$\frac{x^2}{3-k}+\frac{y^2}{k+3}=1$表示椭圆,
必有$\left\{\begin{array}{l}{3-k>0}\\{k+3>0}\\{3-k≠k+3}\end{array}\right.$,
解可得:-3<k<3且k≠0,
即k的取值范围是:{k|-3<k<3且k≠0};
故答案为:{k|-3<k<3且k≠0}.
点评 本题考查椭圆的几何性质,注意区分二元二次方程表示椭圆与圆的方程的区别.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$+1 | C. | $\sqrt{2}$ | D. | 2+$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com