精英家教网 > 高中数学 > 题目详情
6.函数f(x)=x2-sin|x|在[-2,2]上的图象大致为(  )
A.B.C.D.

分析 求出函数f(x)=x2-sinx在(0,2]上导函数,求出极值点的个数,以及f(2)的值,即可判断函数的图象.

解答 解:函数f(x)=x2-sin|x|在[-2,2]是偶函数,
则:f(x)=x2-sinx在(0,2]可得f′(x)=2x-cosx,令2x-cosx=0,可得方程只有一个解,如图:
可知f(x)=x2-sinx在(0,2]由一个极值点,排除A,C,
f(2)=4-sin2>3,排除D.
故选:B.

点评 本题考查函数的图象的判断,函数的极值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.F1、F2是双曲线C的焦点,过F1且与双曲线实轴垂直的直线与双曲线相交于A、B,且△F2AB为正三角形,则双曲线的离心率e=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{m}$,$\overrightarrow{n}$为两个非零向量,且|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,则|$\overrightarrow{n}$|+|2$\overrightarrow{m}$+$\overrightarrow{n}$|的最大值为(  )
A.4$\sqrt{2}$B.3$\sqrt{3}$C.$\frac{7\sqrt{3}}{2}$D.$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx+$\frac{ax}{x+1}$(a∈R).
(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;
(2)若函数y=f(x)的图象与直线y=2x相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设p:2x<1,q:x(x+1)<0,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=cos2x+asinx在区间[$\frac{π}{6}$,$\frac{π}{2}$]上的最小值大于零,则a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知平面直角坐标系xOy中,过点P(-1,-2)的直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ•sinθ•tanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|=|MN|,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过左焦点F1作斜率为$\frac{\sqrt{3}}{3}$的直线交双曲线的右支于点P,且y轴平分线段F1P,则双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$+1C.$\sqrt{2}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.半径为2的圆C的圆心在第四象限,且与直线x=0和$x+y=2\sqrt{2}$均相切,则该圆的标准方程为(  )
A.(x-1)2+(y+2)2=4B.(x-2)2+(y+2)2=2C.(x-2)2+(y+2)2=4D.(x-2$\sqrt{2}$)2+(y+2$\sqrt{2}$)2=4

查看答案和解析>>

同步练习册答案