精英家教网 > 高中数学 > 题目详情
15.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的表面积为(  )
A.2B.4+2$\sqrt{2}$C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

分析 根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积.

解答 解:根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是$\sqrt{2}$、斜边是2,且侧棱与底面垂直,侧棱长是2,
∴几何体的表面积S=$2×2+2×2×\sqrt{2}+2×\frac{1}{2}×\sqrt{2}×\sqrt{2}$=6+4$\sqrt{2}$,
故选:D.

点评 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.以坐标原点O为圆心,且与直线x+y+2=0相切的圆方程是x2+y2=2,圆O与圆x2+y2-2y-3=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆x2+2y2=8的两个焦点分别为F1,F2,A为椭圆上的任意一点,AP是∠F1AF2的外角平分线,且$\overrightarrow{AP}•\overrightarrow{{F_2}P}=0$,则点P的坐标一定满足(  )
A.x2+y2=8B.x2+y2=1C.x2-y2=1D.$\frac{x^2}{4}+\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若2sinθ+cosθ=0,则$tan(θ+\frac{π}{4})$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,直角△ABC中,∠ACB=90°,BC=2AC=4,D、E分别是AB、BC边的中点,沿DE将△BDE折起至△FDE,且∠CEF=60°.
(Ⅰ)求四棱锥F-ADEC的体积;
(Ⅱ)求证:平面ADF⊥平面ACF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了摸清整个江门大道的交通状况,工作人员随机选取20处路段,在给定的测试时间内记录到机动车的通行数量情况如下(单位:辆):
147  161  170  180  163  172  178  167  191  182
181  173  174  165  158  154  159  189  168  169
(Ⅰ)完成如下频数分布表,并作频率分布直方图;
通行数量区间[145,155)[155,165)[165,175)[175,185)[185,195)
频数
(Ⅱ)现用分层抽样的方法从通行数量区间为[165,175)、[175,185)及[185,195)的路段中取出7处加以优化,再从这7处中随机选2处安装智能交通信号灯,设所取出的7处中,通行数量区间为[165,175)路段安装智能交通信号灯的数量为随机变量X(单位:盏),试求随机变量X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=x2-2x-3,若从区间[-2,4]上任取一个实数x0,则所选取的实数x0满足f(x0)≤0的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+lnx(a∈R).
(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若对任意x∈(0,+∞),都有f(x)<2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若点P是△ABC的外心,且$\overrightarrow{PA}$+$\overrightarrow{PB}$+λ$\overrightarrow{PC}$=$\overrightarrow{0}$,∠C=120°,则实数λ的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-1D.1

查看答案和解析>>

同步练习册答案