精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,则φ=( )
A.
B.
C.
D.

【答案】D
【解析】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=
不妨x1= ,x2= ,即g(x)在x2= ,取得最小值,sin(2× ﹣2φ)=﹣1,此时φ=- ,不合题意,
x1= ,x2= ,即g(x)在x2= ,取得最大值,sin(2× ﹣2φ)=1,此时φ= ,满足题意.
故选:D.
利用三角函数的最值,求出自变量x1 , x2的值,然后判断选项即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A′B′C′D′.

(1)设M,N分别是A′D′,A′B′的中点,试在下列三个正方体中各作出一个过正方体顶点且与平面AMN平行的平面(不用写过程)
(2)设S是B′D′的中点,F,G分别是DC,SC的中点,求证:直线GF∥平面BDD′B′.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按 分组,整理如下图:

(Ⅰ)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为 ,试比较的大小(只需写出结论);

(Ⅱ)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;

(Ⅲ)估计1200个日销售量数据中,数据在区间中的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,四边形为矩形, 为等腰三角形, 平面平面,且 分别为的中点.

)证明: 平面

)证明:平面平面

)当上的动点满足什么条件时,使三棱锥的体积与四棱锥体积的比值为,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输入的N是195,则输出的P=(

A.11
B.12
C.13
D.14

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中, ,点E,H分别是所在边靠近B,D的三等分点,现沿着EH将矩形折成直二面角,分别连接AD,AC,CB,形成如图所示的多面体.

(1)证明:平面BCE∥平面ADH;

(2)证明:EHAC;

(3)求二面角B-AC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆

)设,求过点且与圆相切的直线方程.

)设,直线过点且被圆截得的弦长为,求直线的方程.

)设,直线过点,求被圆截得的线段的最短长度,并求此时的方程.

查看答案和解析>>

同步练习册答案