精英家教网 > 高中数学 > 题目详情

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

【答案】(1)2;(2);(3).

【解析】试题分析】(1)借助频率分布直方图求解;(2)依据频率分布表,运用加权平均数的计算公式求解;(3)先计算平均数,再求出回归方程的斜率(系数)

(1)设各小长方形的宽度为,由频率分布直方图中各小长方形的面积总和为1,可知,故,即图中各小长方形的宽度为2.

(2)由(1)知各小组依次是,其中点分别为,

对应的频率分别为,

故可估计平均值为.

(3)由(2)可知空白栏中填5.

由题意可知,

,

,

根据公式,可求得

,

所以所求的回归直线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果存在函数为常数),使得对一切实数都成立,则称为函数的一个承托函数,给出如下命题:

①函数是函数的一个承托函数;

②函数是函数的一个承托函数;

③若函数是函数的一个承托函数,则的取值范围是

④值域是的函数不存在承托函数.

其中正确的命题的个数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2 +x)﹣ cos2x,
(1)求f(x)的最小正周期及单调递减区间;
(2)当x 时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,cosx), =(sin(x﹣ ),sinx),函数f(x)=2 ,g(x)=f( ).
(1)求f(x)在[ ,π]上的最值,并求出相应的x的值;
(2)计算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,讨论g(x)在[t,t+2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设函数.

(1)当时,求的极值点;

(2)讨论在区间上的单调性;

(3)对任意恒成立时, 的最大值为1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设函数.

(1)当时,求的极值点;

(2)讨论在区间上的单调性;

(3)对任意恒成立时, 的最大值为1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x3+ax2+bx+c图象上的点P(1,m)处的切线方程为y=﹣3x+1
(1)若函数f(x)在x=﹣2时有极值,求f(x)的表达式.
(2)若函数f(x)在区间[﹣2,0]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,则φ=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去个三棱锥后,剩下的几何体的体积是( ).

A. B. C. D.

查看答案和解析>>

同步练习册答案