【题目】如图 所示,一条直角走廊宽为,
(1)若位于水平地面上的一根铁棒在此直角走廊内,且,试求铁棒的长;
(2)若一根铁棒能水平地通过此直角走廊,求此铁棒的最大长度;
(3)现有一辆转动灵活的平板车,其平板面是矩形,它的宽为如图2.平板车若想顺利通过直角走廊,其长度不能超过多少米?
【答案】(1),,,.
(2)
(3)
【解析】
(1)在图1中,过点作,的垂线,垂直分别为,,则,,在,中,分别求解,再相加,即可.
(2)由(1)可知,,令,则,判断单调性,再求最小值,即可.
(3)延长分别交,于,,设,则.由(1)可知,在,中分别计算,,则,即,令,则,判断单调性,再求最小值,即可
(1)在图1中,过点作,的垂线,垂直分别为,,则,.
在中
在中
则
即,,,.
(2)由(1)可知,.
令,则
即
当时,单调递增,单调递减.
则即时
若一根铁棒能水平地通过此直角走廊,则需此铁棒的最大长度为
(3)延长分别交,于,,设,则.
由(1)可知,
在中,
在中,
则
令,则
即,,.
当时单调递减.
则即时.
平板车若想顺利通过直角走廊,其长度不能超过
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2-a-lnx,其中a ∈R.
(I)讨论f(x)的单调性;
(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂家具车间造、型两类桌子,每张桌子需木工和漆工梁道工序完成.已知木工做一张、型型桌子分别需要1小时和2小时,漆工油漆一张、型型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张、型型桌子分别获利润2千元和3千元.
(1)列出满足生产条件的数学关系式,并画出可行域;
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,现从参与调查的人群中随机选出20人的样本,并将这20人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示
(1)求a的值.
(2)根据频率分布直方图,估计参与调查人群的样本数据的分位数(保留两位小数).
(3)若从年龄在的人中随机抽取两位,求两人恰有一人的年龄在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:
打算观看 | 不打算观看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中数据b,c;
(2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;
(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·绍兴仿真考试)已知数列{an}的奇数项依次构成公差为d1的等差数列,偶数项依次构成公差为d2的等差数列(其中d1,d2为整数),且对任意n∈N*,都有an<an+1,若a1=1,a2=2,且数列{an}的前10项和S10=75,则d1=________,a8=________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·浙江卷)已知数列{an}满足a1=且an+1=an- (n∈N*).
(1)证明:1≤≤2(n∈N*);
(2)设数列{ }的前n项和为Sn,证明: (n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表如下,频率分布直方图如图:
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合计 | M | 1 |
(1)求出表中M,p及图中a的值;
(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com