精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\frac{{x}^{2}-3x+4}{x}$,g(x)=mx+2,若对任意的x1∈[1,3],总存在x2∈[1,3],使得f(x2)<g(x1),则实数m的取值范围是(-$\frac{1}{3}$,+∞).

分析 命题“对任意的x1∈[1,3],总存在x2∈[1,3],使得g(x1)>f(x2)”?g(x)最小值>f(x)最小值,只要g(x)最小值>1即可.

解答 解:∵x∈[1,3],
∴f(x)=x+$\frac{4}{x}$-3≥4-3=1,
当且仅当x=$\frac{4}{x}$,即x=2时取等号.∴f(x)最小值=1,
命题“对任意的x1∈[1,3],总存在x2∈[1,3],使得g(x1)>f(x2)”?g(x)最小值>f(x)最小值
只要g(x)最小值>1即可.
当m>0时,g(x)=mx+2是增函数,
对任意的x1∈[1,3],g(x)min=g(1)=2+m.
由题设知2+m>1,解得m>-1,
∴m>0
当m<0时,g(x)=mx+2是减函数,
对任意的x1∈[1,3],g(x)min=g(3)=3m+2.
由题设知3m+2>1,解得m>-$\frac{1}{3}$,
∴-$\frac{1}{3}$<m<0,
当m=0时,g(x)=2>1,成立.
综上所述,m>-$\frac{1}{3}$,
故答案为:(-$\frac{1}{3}$,+∞).

点评 本题考查函数恒成立问题的应用,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知正方体ABCD-A1B1C1D1的边长为a,则异面直线AC1与BD的距离为(  )
A.$\sqrt{3}$aB.$\frac{\sqrt{3}}{2}$aC.$\frac{\sqrt{6}}{3}$aD.$\frac{\sqrt{6}}{6}$a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,求一组斜率为m的平行弦的中点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列随机变量:
①广州白云机场侯机室中一天的旅客数量X;
②高要某气象站观察到一天中高要的气温X;
③深圳欢乐谷一日接待游客的数量X;
④西江大桥一天经过的车辆数X.
其中是离散型随机变量的为(  )
A.①②③④B.①②④C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1+2lnx}{{x}^{2}}$+2f′(1)x.
(I)求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若关于x的方程f(x)=a+2f′(1)x在[$\frac{1}{e}$,e]上有两个不同的实数根,求实数a的取值范围;
(Ⅲ)若存在x1>x2>0,使f(x1)-klnx1≤f(x2)-klnx2成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinx+λcosx(λ∈R)的图象关于直线x=-$\frac{π}{4}$对称,把函数f(x)的图象上,每个点的横坐标扩大到原来的2倍,纵坐标不变,再将所得函数图象向右平移$\frac{π}{3}$个单位长度,得到函数g(x)的图象,则函数g(x)的一个对称中心是(  )
A.($\frac{π}{6}$,0)B.($\frac{π}{4}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{6}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.f(x)=sin($\frac{π}{3}$-2x).
(1)求f(x)的最小正周期;
(2)求f(x)的最值及相应的x值;
(3)求f(x)的单调增区间;
(4)其图象沿x轴经过怎样的平移可以得到关于y轴对称的图象?
(5)若m≤f(x)≤求n,求m,n的取值范围;
(6)若f(x1)≤f(x)≤f(x2),求f(x1),f(x2),|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x、y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x-y≤0}\\{4x+3y≤14}\end{array}\right.$,设(x+2)2+(y+1)2的最小值为ω,则函数f(t)=sin(ωt+$\frac{π}{6}$)的最小正周期为$\frac{2π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.焦点在x轴上,焦距为10,且与双曲线$\frac{{y}^{2}}{4}$-x2=1有相同渐近线的双曲线的标准方程是$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

查看答案和解析>>

同步练习册答案