精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=sinx+λcosx(λ∈R)的图象关于直线x=-$\frac{π}{4}$对称,把函数f(x)的图象上,每个点的横坐标扩大到原来的2倍,纵坐标不变,再将所得函数图象向右平移$\frac{π}{3}$个单位长度,得到函数g(x)的图象,则函数g(x)的一个对称中心是(  )
A.($\frac{π}{6}$,0)B.($\frac{π}{4}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{6}$,0)

分析 根据函数的对称性利用特殊值法求出λ=-1,利用辅助角公式结合三角函数的图象变换关系求出g(x)的解析式,利用三角函数的对称性进行求解即可.

解答 解:若函数f(x)=sinx+λcosx(λ∈R)的图象关于直线x=-$\frac{π}{4}$对称,
则f(0)=f(-$\frac{π}{2}$),
即sin0+λcos0=sin(-$\frac{π}{2}$)+λcos(-$\frac{π}{2}$),
即λ=-1,
则f(x)=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$),
函数f(x)的图象上,每个点的横坐标扩大到原来的2倍,纵坐标不变得到y=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{π}{4}$),
再将所得函数图象向右平移$\frac{π}{3}$个单位长度,得到函数g(x)的图象,即g(x)=$\sqrt{2}$sin[$\frac{1}{2}$(x-$\frac{π}{3}$)-$\frac{π}{4}$]=$\sqrt{2}$sin($\frac{1}{2}$x-$\frac{5π}{12}$),
由$\frac{1}{2}$x-$\frac{5π}{12}$=kπ,得x=2kπ+$\frac{5π}{6}$,k∈Z
当k=0时,函数的对称中心为($\frac{5π}{6}$,0),
故选:D.

点评 本题主要考查三角函数的图象和性质,利用三角函数的对称性以及三角函数的图象变换关系求出函数的解析式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.定义函数F(a,b)=$\frac{1}{2}$(a+b-|a-b|)(a,b∈R),设函数f(x)=-x2+2x+4,g(x)=x+2(x∈R),函数F(f(x),g(x))的最大值与零点之和为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线x2-$\frac{{y}^{2}}{3}$=1的左右焦点分别为F1,F2,过F2作倾斜角为150°的直线交双曲线于A、B两点,则△F1AB的周长是3+3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若sinα=$\frac{1}{\sqrt{5}}$,sinβ=$\frac{1}{\sqrt{10}}$,且α、β∈(0,$\frac{π}{2}$),则α+β是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\frac{{x}^{2}-3x+4}{x}$,g(x)=mx+2,若对任意的x1∈[1,3],总存在x2∈[1,3],使得f(x2)<g(x1),则实数m的取值范围是(-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知不等式ax2+bx+1>0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},解不等式x2+bx+a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与直线y=-1所围成的三角形的面积为4,则双曲线C的离心率为(  )
A.$\sqrt{15}$B.$\frac{\sqrt{17}}{2}$C.$\sqrt{17}$D.$\frac{\sqrt{15}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知{an}是等比数列,S4=1,S8=4,则a17+a18+a19+a20=81.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.
(Ⅰ)求证:BC⊥A1B;
(Ⅱ)若P是线段AC上一点,$AD=\sqrt{3}$,AB=BC=2,三棱锥A1-PBC的体积为$\frac{{\sqrt{3}}}{3}$,求$\frac{AP}{PC}$的值.

查看答案和解析>>

同步练习册答案