精英家教网 > 高中数学 > 题目详情
13.已知不等式ax2+bx+1>0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},解不等式x2+bx+a>0.

分析 根据不等式ax2+bx+1>0的解集求出a、b的值,再求不等式x2+bx+a>0的解集即可.

解答 解:∵不等式ax2+bx+1>0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},
∴-$\frac{1}{2}$,$\frac{1}{3}$是一元二次方程ax2+bx+1=0的两个实数根,且a<0,
∴$\left\{\begin{array}{l}{-\frac{1}{2}+\frac{1}{3}=-\frac{b}{a}}\\{-\frac{1}{2}×\frac{1}{3}=\frac{1}{a}}\end{array}\right.$,
解得a=-6,b=-1;
则不等式x2+bx+a>0化为x2-x-6>0,
解得x<-2或x>3;
∴不等式x2+bx+a>0的解集为{x|x<-2或x>3}.

点评 本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.做一个圆柱形锅炉,容积为8π,两个底面的材料每单位面积的价格为2元,侧面的材料每单位面积的价格为4元,当造价最低时,锅炉的底面半径为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R内的奇函数f(x)满足:对任意x∈R郡有f(x+1)=f(3-x),若f(1)=-2,则2016f(2016)-2015f(2015)=(  )
A.-2015B.2015C.-4030D.4030

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,则z=$\frac{{y}^{2}}{x}$的最大值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinx+λcosx(λ∈R)的图象关于直线x=-$\frac{π}{4}$对称,把函数f(x)的图象上,每个点的横坐标扩大到原来的2倍,纵坐标不变,再将所得函数图象向右平移$\frac{π}{3}$个单位长度,得到函数g(x)的图象,则函数g(x)的一个对称中心是(  )
A.($\frac{π}{6}$,0)B.($\frac{π}{4}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{6}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.直线y=m与曲线y=cosx(x∈(0,2π))的图象有两个交点(x1,m)和(x2,m),则m的取值范围是(-1,1);x1+x2=2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若α∈($\frac{π}{4}$,$\frac{π}{2}$),则sinα,cosα,tanα的大小关系是(  )
A.sinα>cosα>tanαB.tanα>cosα>sinαC.cosα>tanα>sinαD.tanα>sinα>cosα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合P={(x,y)|$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)},Q={(x,y)|$\frac{x}{a}$+$\frac{y}{b}$>m(a>b>0,m>0)},若?M∈P,M∉Q,则实数m的取值范围是(  )
A.[$\sqrt{2}$,+∞)B.[2$\sqrt{2}$,+∞)C.[$\frac{\sqrt{6}}{6}$,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线3x2-y2=75上一点P到它的一个焦点的距离等于12,那么点P到它的另一个焦点的距离等于22.

查看答案和解析>>

同步练习册答案