精英家教网 > 高中数学 > 题目详情
18.直线y=m与曲线y=cosx(x∈(0,2π))的图象有两个交点(x1,m)和(x2,m),则m的取值范围是(-1,1);x1+x2=2π.

分析 作出函数直线y=m与曲线y=cosx(x∈(0,2π))的图象如图,利用数形结合结合三角函数的有界性和对称性进行求解即可.

解答 解:作出函数直线y=m与曲线y=cosx(x∈(0,2π))的图象如图,
若两个图象有两个交点,
则-1<m<1,
两个交点(x1,m)和(x2,m),关于x=π对称,
则$\frac{{x}_{1}+{x}_{2}}{2}=π$,
即x1+x2=2π,
故答案为:(-1,1),2π.

点评 本题主要考查三角函数图象和性质,作出两个函数的图象,利用数形结合是解决本题的关键,重点考察三角函数的对称性的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在平面直角坐标系中,过原点O的直线l与曲线y=ex-2交于不同的两点A、B,分别过A、B作x轴的垂线,与曲线y=lnx交于点C、D,则直线CD的斜率为(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}的第1项、第2项和 第7项恰好成等比数列,且这3项的和为93,求等差数列{an}的首项和公差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x、y满足约束条件$\left\{\begin{array}{l}{x-\frac{1}{2}y≤1}\\{x-2y+2≥0}\\{x+y≥2}\end{array}\right.$,若有无穷多个实数对(x,y),使得目标函数z=mx+y取得最大值,则实数m的值是(  )
A.-$\frac{3}{4}$B.-$\frac{1}{2}$C.-$\frac{2}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知不等式ax2+bx+1>0的解集为{x|-$\frac{1}{2}$<x<$\frac{1}{3}$},解不等式x2+bx+a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-$\sqrt{3}$,x),且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,则x=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=|ex+$\frac{a}{{e}^{x}}$|在[0,1]上单调递减,则实数a的取值范围是(-∞,-e2]∪[e2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(cos75°+sin75°)2=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左,右焦点,过点F1的直线l与双曲线C的左,右两支分别交于P,Q两点,若△PQF2是以∠PQF2为为直角的等腰直角三角形,e为双曲线C的离心率,则e2=5+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案