精英家教网 > 高中数学 > 题目详情
11.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{an}为“斐波那契数列”.若把该数列{an}的每一项除以4所得的余数按相对应的顺序组成新数列{bn},在数列{bn}中第2016项的值是0.

分析 根据数列,得到余数构成是数列是周期数列,即可得到结论.

解答 解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,
即新数列{bn}是周期为6的周期数列,
∴b2016=b336×6=b6=0,
故答案为:0.

点评 本题主要考查数列的应用,考查数列为周期数性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{5}(1-x)|,x<1}\\{-(x-2)^{2}+2,x≥1}\end{array}\right.$,则方程f(x+$\frac{1}{x}$-2)=a的实根个数不可能为(  )
A.8个B.7个C.6个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=($\frac{1}{3}$)x2-9的单调递减区间为(  )
A.(-∞,0)B.(0,+∞)C.(-9,+∞)D.(-∞,-9)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,$b=2\sqrt{3}$,A=60°,则满足条件的三角形个数为(  )
A.0B.1C.2D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{2x+y+k≤0}\end{array}\right.$,(k为常数),若z=3x+y的最大值为8,则k的值为(  )
A.$-\frac{16}{3}$B.$\frac{16}{3}$C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,D为BC边上的动点,且AD=3,B=$\frac{π}{3}$.
(1)若cos∠ADC=$\frac{1}{3}$,求AB的值;
(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=$\frac{3}{5}$,则△ABC的面积是(  )
A.16B.6C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$),其导函数f'(x)的部分图象如图所示,则函数f(x)的解析式为(  )
A.$f(x)=cos(2x-\frac{π}{6})$B.$f(x)=sin(2x+\frac{π}{6})$C.$f(x)=\frac{1}{2}cos(2x+\frac{π}{6})$D.$f(x)=\frac{1}{2}sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(x,-2)$\overrightarrow{c}$=(-1,y),若$\overrightarrow{a}⊥\overrightarrow{b}$且$\overrightarrow{a}$∥$\overrightarrow{c}$,则x+y=1.

查看答案和解析>>

同步练习册答案