精英家教网 > 高中数学 > 题目详情
12.(1)已知函数f(x)=x3-mx2-nx的图象与x轴相切,切点为(1,0),且g(x)=f(x)+1,求g(x)的极值.
(2)已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f'(0)=0,$\int_{\;-1}^{\;0}{f(x)dx=-4}$,求a、b、c的值.

分析 (1)求出函数的导数,得到关于m,n的方程,求出m,n的值,解关于导函数的不等式,求出函数g(x)的单调区间,从而求出g(x)的极值即可;
(2)根据解析式求出函数的导数和定积分,再列出三个方程进行求解.

解答 解:(1)f(x)=x3-mx2-nx,f′(x)=3x2-2mx-n,
若f(x)与x轴相切,切点为(1,0),
故f′(1)=3-2m-n=0,f(1)=1-m-n=0,
解得:m=2,n=-1,
故f(x)=x3-2x2+x,
g(x)=x3-2x2+x+1,
g′(x)=3x2-4x+1=(3x-1)(x-1),
令g′(x)>0,解得:x>1或x<$\frac{1}{3}$,
令g′(x)<0,解得:$\frac{1}{3}$<x<1,
故g(x)在(-∞,$\frac{1}{3}$)递增,在($\frac{1}{3}$,1)递减,在(1,+∞)递增,
故g(x)的极大值是g($\frac{1}{3}$)=$\frac{31}{27}$,g(x)的极小值是g(1)=1;
(2)由f(-1)=2得,a-b+c=2  ①
又∵f′(x)=2ax+b,∴f′(0)=b=0,②
∵∫-10(ax2+bx+c)dx=$\frac{1}{3}$a-$\frac{1}{2}$b+c,
∴$\frac{1}{3}$a-$\frac{1}{2}$b+c=-4③
联立①②③式解得,a=9,b=0,c=-7.

点评 本题考查了用待定系数法求函数的解析式,涉及了导数和定积分的知识应用,需要用导数公式进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.椭圆3x2+4y2=6的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知幂函数$f(x)={x^{2{m^2}-m-3}}({m∈Z})$为奇函数,且在区间(0,+∞)上是减函数,则f(x)=(  )
A.y=x3B.y=xC.y=x-3D.y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)在其图象上存在不同的两点A(x1,y1),B(x2,y2),其坐标满足条件:|x1x2+y1y2|-$\sqrt{{x_1}^2+y{{{\;}_1}^2}}•\sqrt{{x_2}^2+y{{{\;}_2}^2}}$的最大值为0,则称f(x)为“柯西函数”,
则下列函数:
①f(x)=x+$\frac{1}{x}$(x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;       
④f(x)=$\sqrt{2{x^2}-8}$.
其中为“柯西函数”的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f'(5)分别为(  )
A.3,3B.3,-1C.-1,3D.0,-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆Cn:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=n(a>b>0,n∈N*),F1、F2是椭圆C4的焦点,A(2,$\sqrt{2}$)是椭圆C4上一点,且$\overrightarrow{A{F}_{2}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0;
(1)求Cn的离心率并求出C1的方程;
(2)P为椭圆C2上任意一点,过P且与椭圆C2相切的直线l与椭圆C4交于M,N两点,点P关于原点的对称点为Q;求证:△QMN的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果x=[x]+{x},[x]∈Z,0≤{x}<1,就称[x]表示x的整数部分,{x}表示x的小数部分.已知数列{an}满足a1=$\sqrt{5}$,an+1=[an]+$\frac{2}{\{{a}_{n}\}}$,则a2017-a2016等于(  )
A.2017+$\sqrt{5}$B.2016-$\sqrt{5}$C.6-$\sqrt{5}$D.6+$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.sin63°cos18°+cos63°cos108°=$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}中,a1=3,an+1=2an+2(n∈N*).
(1)求a2,a3的值;
(2)求证:{an+2}是等比数列,并求数列{an}的通项公式;
(3)设bn=$\frac{n}{{a}_{n}+2}$,Sn=b1+b2+…+bn,证明:对?n∈N*,都有$\frac{1}{5}$≤Sn<$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案