精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=4x+$\frac{a}{x}$(x>0,a>0)在x=2时取得最小值,则实数a=16.

分析 由基本不等式等号成立的条件和题意可得a的方程,解方程可得.

解答 解:∵x>0,a>0,∴f(x)=4x+$\frac{a}{x}$≥2$\sqrt{4x•\frac{a}{x}}$=4$\sqrt{a}$,
当且仅当4x=$\frac{a}{x}$即x=$\frac{\sqrt{a}}{2}$时取等号,
又∵f(x)在x=2时取得最小值,
∴$\frac{\sqrt{a}}{2}$=2,解得a=16,
故答案为:16.

点评 本题考查基本不等式求最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知F1,F2为椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点,F2在以$Q(\sqrt{2},1)$为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式$\frac{x+1}{x-3}$≥0的解集是{x|x>3或x≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.关于x的方程${x^2}+4xsin\frac{α}{2}+mtan\frac{α}{2}=0(0<α<π)$有两个相等的实数根.
(1)求实数m的取值范围;
(2)若$m+2cosα=\frac{4}{3}$,求$\frac{1+sin2α-cos2α}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某市一重点中学在2015年高考体检中,有5位同学的身高依次为150,155,x,174,182,单位:cm.已知这5位同学的身高的中位数为164.
(1)求x及这5位同学的身高的平均数;
(2)从以上的5位同学中随机地选2位同学,记他们的身高之差为a(a>0),用<M>表示大于或等于M的最小整数,如:<0.8>=1,<2>=2,<2.1>=3,令X=<$\frac{a}{10}$>,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,点P是△ABC所在平面外的一点,PA=PB=PC=AB=BC=AC=1,F为AP的中点.
(1)求异面直线PC与AB所成角的大小;
(2)求异面直线AB与PC的距离;
(3)E为AB的中点,求CF与PE所成角的大小;
(4)求P到平面ABC的距离;
(5)求F到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为(  )
A.$16\sqrt{3}$B.$\sqrt{38}$C.$4\sqrt{2}$D.$2\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.执行如图所示的程序框图,其运行结果是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象与x轴的交点为(-$\frac{π}{6}$,0),与此交点距离最小的最高点坐标为($\frac{π}{12}$,1).
(Ⅰ)求函数f(x)的解析式,并求出f(x)的对称中心的坐标;
(Ⅱ)若函数f(x)满足方程f(x)=a(-1<a<0),求在[0,2π]内的所有实数根之和;
(Ⅲ)把函数y=f(x)的图象的周期扩大为原来的2倍,然后向右平移$\frac{2π}{3}$个单位,再把纵坐标伸长为原来的2倍,最后向上平移1个单位得到函数g(x)的图象.若对任意的0≤m≤3,方程|g(kx)|=m在区间[0,$\frac{5π}{6}$]上至少有一个解,求正实数k的取值范围.

查看答案和解析>>

同步练习册答案