【题目】已知
的内角
成等差数列,且
所对的边分别为
,则有下列四个命题:
①
;
②若
成等比数列,则
为等边三角形;
③若
,则
为锐角三角形;
④若
,则
.
则以上命题中正确的有________________.( 把所有正确的命题序号都填在横线上 ).
科目:高中数学 来源: 题型:
【题目】设函数
且x,
.
(1)判断
的奇偶性,并用定义证明;
(2)若不等式
在
上恒成立,试求实数a的取值范围;
(3)
的值域为
函数
在
上的最大值为M,最小值为m,若
成立,求正数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定一个
项的实数列
,
,
,
,任意选取一个实数
,变换
将数列
,
,
,
变换为数列
,
,
,
,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数
可以不相同,第
次变换记为
,其中
为第
次变换时所选择的实数.如果通过
次变换后,数列中的各项均为
,则称
,
,
,
为“
次归零变换”.
(
)对数列
,
,
,
,给出一个“
次归零变换”,其中
.
(
)对数列
,
,
,
,
,给出一个“
次归零变换”,其中
.
(
)证明:对任意
项的实数列,都存在“
次归零变换”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】庙会是我国古老的传统民俗文化活动,又称“庙市”或 “节场”.庙会大多在春节、元宵节等节日举行.庙会上有丰富多彩的文化娱乐活动,如“砸金蛋”(游玩者每次砸碎一颗金蛋,如果有奖品,则“中奖”).今年春节期间,某校甲、乙、丙、丁四位同学相约来到某庙会,每人均获得砸一颗金蛋的机会.游戏开始前,甲、乙、丙、丁四位同学对游戏中奖结果进行了预测,预测结果如下:
甲说:“我或乙能中奖”; 乙说:“丁能中奖”;
丙说:“我或乙能中奖”; 丁说:“甲不能中奖”.
游戏结束后,这四位同学中只有一位同学中奖,且只有一位同学的预测结果是正确的,则中奖的同学是( )
![]()
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:![]()
![]()
![]()
![]()
![]()
![]()
.其中
成等差数列且
.
物理成绩统计如表.(说明:数学满分150分,物理满分100分)
![]()
分组 |
|
|
|
|
|
频数 | 6 | 9 | 20 | 10 | 5 |
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”的同学总数为6人,从数学成绩为“优”的同学中随机抽取2人,求两人恰好均为物理成绩“优”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
的左焦点的直线
与椭圆
交于
两点,直线
过坐标原点且与直线
的斜率互为相反数.若直线
与椭圆交于
两点且均不与点
重合,设直线
与
轴所成的锐角为
,直线
与
轴所成的锐角为
,判断
与
的大小关系并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com