【题目】已知椭圆
的离心率为
,且过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过椭圆
的左焦点的直线
与椭圆
交于
两点,直线
过坐标原点且与直线
的斜率互为相反数.若直线
与椭圆交于
两点且均不与点
重合,设直线
与
轴所成的锐角为
,直线
与
轴所成的锐角为
,判断
与
的大小关系并加以证明.
科目:高中数学 来源: 题型:
【题目】寒冷的冬天,某高中一组学生来到一大棚蔬菜基地,研究种子发芽与温度控制技术的关系,他们分别记录五组平均温度及种子的发芽数,得到如下数据:
平均温度 | 11 | 10 | 13 | 9 | 12 |
发芽数 | 25 | 23 | 30 | 16 | 26 |
(Ⅰ)若从五组数据中选取两组数据,求这两组数据平均温度相差不超过
概率;
(Ⅱ)求
关于
的线性回归方程
;
(Ⅲ)若由线性回归方程得到的估计数据与实际数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)屮所得的线性回归方程是否可靠?
(注:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的内角
成等差数列,且
所对的边分别为
,则有下列四个命题:
①
;
②若
成等比数列,则
为等边三角形;
③若
,则
为锐角三角形;
④若
,则
.
则以上命题中正确的有________________.( 把所有正确的命题序号都填在横线上 ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角
和以
为直径的半圆拼接而成,点
为半圈上一点(异于
,
),点
在线段
上,且满足
.已知
,
,设
.
![]()
(1)为了使工艺礼品达到最佳观赏效果,需满足
,且
达到最大.当
为何值时,工艺礼品达到最佳观赏效果;
(2)为了工艺礼品达到最佳稳定性便于收藏,需满足
,且
达到最大.当
为何值时,
取得最大值,并求该最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为
的样本,得到一周参加社区服务的时间的统计数据好下表:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求
,
;
(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:
,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若
OMN为直角三角形,则|MN|=
A.
B. 3 C.
D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:
,点
在x轴的正半轴上,过点M的直线l与抛线C相交于A、B两点,O为坐标原点.
若
,且直线l的斜率为1,求证:以AB为直径的圆与抛物线C的准线相切;
是否存在定点M,使得不论直线l绕点M如何转动,
恒为定值?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018河南豫南九校高三下学期第一次联考】设函数
.
(I)当
时,
恒成立,求
的范围;
(II)若
在
处的切线为
,且方程
恰有两解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市环保部门为了让全市居民认识到冬天烧煤取暖对空气
数值的影响,进而唤醒全市人民的环保节能意识。对该市取暖季烧煤天数
与空气
数值不合格的天数
进行统计分析,得出下表数据:
| 9 | 8 | 7 | 5 | 4 |
| 7 | 6 | 5 | 3 | 2 |
(1)以统计数据为依据,求出
关于
的线性回归方程
;
(2)根据(1)求出的线性回归方程,预测该市烧煤取暖的天数为20时空气
数值不合格的天数.
参考公式:
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com