10£®ÒÑÖªÅ×ÎïÏßE£ºy2=2px£¨p£¾0£©£¬Ö±Ïßx=my+3ÓëE½»ÓÚA¡¢BÁ½µã£¬ÇÒ$\overrightarrow{OA}$•$\overrightarrow{OB}$=6£¬ÆäÖÐOÎª×ø±êÔ­µã£®
£¨1£©ÇóÅ×ÎïÏßEµÄ·½³Ì£»
£¨2£©ÒÑÖªµãCµÄ×ø±êΪ£¨-3£¬0£©£¬¼ÇÖ±ÏßCA¡¢CBµÄбÂÊ·Ö±ðΪk1£¬k2£¬Ö¤Ã÷$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2Ϊ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£º½«Ö±Ïß·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÓÉΤ´ï¶¨Àí¿ÉÖª£ºy1+y2=2pm£¬y1•y2=-6p£¬$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2=$\frac{{£¨y}_{1}{y}_{2}£©^{2}}{4{p}^{2}}$+y1•y2£¬ÇóµÃ9-6p=6£¬ÇóµÃpµÄÖµ£¬¼´¿ÉÇóµÃÅ×ÎïÏßEµÄ·½³Ì£»
£¨2£©ÓÉÖ±ÏßµÄбÂʹ«Ê½¿ÉÖª£ºk1=$\frac{{y}_{1}}{{x}_{1}+3}$=$\frac{{y}_{1}}{m{y}_{1}+6}$£¬k2=$\frac{{y}_{2}}{{x}_{2}+6}$=$\frac{{y}_{2}}{m{y}_{2}+6}$£¬$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2=£¨m+$\frac{6}{{y}_{1}}$£©2+£¨m+$\frac{6}{{y}_{2}}$£©2-2m2=2m2+12m¡Á$\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$+36¡Á$\frac{£¨{y}_{1}+{y}_{2}£©^{2}-2{y}_{1}{y}_{2}}{{y}_{1}^{2}{y}_{2}^{2}}$-2m2£¬ÓÉ£¨1£©¿ÉÖª£ºy1+y2=2pm=m£¬y1•y2=-6p=-3£¬´úÈë¼´¿ÉÇóµÃ$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2=24£®

½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{x=my+3}\\{{y}^{2}=2px}\end{array}\right.$£¬ÕûÀíµÃ£ºy2-2pmy-6p=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºy1+y2=2pm£¬y1•y2=-6p£¬
Ôòx1•x2=$\frac{{£¨y}_{1}{y}_{2}£©^{2}}{4{p}^{2}}$
ÓÉ$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2=$\frac{{£¨y}_{1}{y}_{2}£©^{2}}{4{p}^{2}}$+y1•y2=9-6p=6£¬½âµÃ£ºp=$\frac{1}{2}$£¬
¡ày2=x£»
£¨2£©Ö¤Ã÷£ºÓÉÖ±ÏßCAµÄбÂÊk1£¬k1=$\frac{{y}_{1}}{{x}_{1}+3}$=$\frac{{y}_{1}}{m{y}_{1}+6}$£¬
CBµÄбÂÊk2£¬k2=$\frac{{y}_{2}}{{x}_{2}+6}$=$\frac{{y}_{2}}{m{y}_{2}+6}$£¬
¡à$\frac{1}{{k}_{1}}$=m+$\frac{6}{{y}_{1}}$£¬$\frac{1}{{k}_{2}}$=m+$\frac{6}{{y}_{2}}$£¬
¡à$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2=£¨m+$\frac{6}{{y}_{1}}$£©2+£¨m+$\frac{6}{{y}_{2}}$£©2-2m2£¬
=2m2+12m£¨$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$£©+36¡Á£¨$\frac{1}{{y}_{1}^{2}}$+$\frac{1}{{y}_{2}^{2}}$£©-2m2£¬
=2m2+12m¡Á$\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$+36¡Á$\frac{£¨{y}_{1}+{y}_{2}£©^{2}-2{y}_{1}{y}_{2}}{{y}_{1}^{2}{y}_{2}^{2}}$-2m2£¬
ÓÉ£¨1£©¿ÉÖª£ºy1+y2=2pm=m£¬y1•y2=-6p=-3£¬
¡à$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2=2m2+12m¡Á£¨$-\frac{m}{3}$£©+36¡Á$\frac{{m}^{2}+6}{9}$-2m2=24£¬
¡à$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵıê×¼·½³Ì¼°Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½¼°Î¤´ï¶¨ÀíµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x+4}{x}$Óëg£¨x£©=|x2-6x|µÄ¶¨ÒåÓòΪ[1£¬4]£®
£¨1£©ÇóÕâÁ½¸öº¯ÊýµÄÖµÓò²¢×÷´¦ÕâÁ½¸öº¯ÊýµÄͼÏó£»
£¨2£©Èôº¯Êýg£¨x£©µÄͼÏóÓëÖ±Ïßy=k½öÓÐÒ»¸ö½»µã£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{x}$+alnx£¬a¡ÊR£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©µ±x¡Ê[$\frac{1}{2}$£¬1]ʱ£¬f£¨x£©µÄ×îСֵÊÇ0£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚ¡÷ABCÖУ¬DÊÇBCÉϵÄÒ»µã£¬ADƽ·Ö¡ÏBACÇÒ¡÷ABDµÄÃæ»ýÊÇ¡÷ADCÃæ»ýµÄ2±¶£®
£¨1£©Çó$\frac{AC}{AB}$µÄÖµ£®
£¨2£©Èô¡ÏBAC=60¡ã£¬BC=2£¬Éè¡ÏB=x£¬¡÷ABCµÄÖܳ¤Îªy£¬Çëд³öyÓëxµÄ¹ØÏµÊ½£¬²¢Çó¶¨ÒåÓòºÍÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÔĶÁÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³ö½á¹ûSµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{8}$B£®$\frac{1}{2}$C£®$\frac{\sqrt{3}}{16}$D£®$\frac{1}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºcm£©£¬ÆäÖÐÕý£¨Ö÷£©ÊÓͼ¡¢²à£¨×ó£©ÊÓͼ¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔòÕâ¸ö¼¸ºÎÌåµÄÌå»ýÊÇ4cm3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÃüÌâp£º0£¼m£¼4ÊǺ¯Êýf£¨x£©=mx2-mx+1ºã´óÓÚ0µÄ³ä·Ö²»±ØÒªÌõ¼þ£»ÃüÌâq£ºf£¨x£©=2x2ÊÇÃݺ¯Êý£®ÔòÏÂÁÐÃüÌâÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®p¡ÄqB£®©Vp¡ÅqC£®©Vp¡Ä©VqD£®p¡Ä©Vq

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈôAΪÈý½ÇÐÎABCµÄÒ»¸öÄڽǣ¬ÇÒsinA+cosA=$\frac{2}{3}$£¬ÔòÕâ¸öÈý½ÇÐÎÊÇ£¨¡¡¡¡£©
A£®¶Û½ÇÈý½ÇÐÎB£®Ö±½ÇÈý½ÇÐÎC£®Èñ½ÇÈý½ÇÐÎD£®ÕýÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªf£¨2x+1£©=3x-5£¬f£¨3£©=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸