·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£º½«Ö±Ïß·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÓÉΤ´ï¶¨Àí¿ÉÖª£ºy1+y2=2pm£¬y1•y2=-6p£¬$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2=$\frac{{£¨y}_{1}{y}_{2}£©^{2}}{4{p}^{2}}$+y1•y2£¬ÇóµÃ9-6p=6£¬ÇóµÃpµÄÖµ£¬¼´¿ÉÇóµÃÅ×ÎïÏßEµÄ·½³Ì£»
£¨2£©ÓÉÖ±ÏßµÄбÂʹ«Ê½¿ÉÖª£ºk1=$\frac{{y}_{1}}{{x}_{1}+3}$=$\frac{{y}_{1}}{m{y}_{1}+6}$£¬k2=$\frac{{y}_{2}}{{x}_{2}+6}$=$\frac{{y}_{2}}{m{y}_{2}+6}$£¬$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2=£¨m+$\frac{6}{{y}_{1}}$£©2+£¨m+$\frac{6}{{y}_{2}}$£©2-2m2=2m2+12m¡Á$\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$+36¡Á$\frac{£¨{y}_{1}+{y}_{2}£©^{2}-2{y}_{1}{y}_{2}}{{y}_{1}^{2}{y}_{2}^{2}}$-2m2£¬ÓÉ£¨1£©¿ÉÖª£ºy1+y2=2pm=m£¬y1•y2=-6p=-3£¬´úÈë¼´¿ÉÇóµÃ$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2=24£®
½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{x=my+3}\\{{y}^{2}=2px}\end{array}\right.$£¬ÕûÀíµÃ£ºy2-2pmy-6p=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºy1+y2=2pm£¬y1•y2=-6p£¬
Ôòx1•x2=$\frac{{£¨y}_{1}{y}_{2}£©^{2}}{4{p}^{2}}$
ÓÉ$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2=$\frac{{£¨y}_{1}{y}_{2}£©^{2}}{4{p}^{2}}$+y1•y2=9-6p=6£¬½âµÃ£ºp=$\frac{1}{2}$£¬
¡ày2=x£»
£¨2£©Ö¤Ã÷£ºÓÉÖ±ÏßCAµÄбÂÊk1£¬k1=$\frac{{y}_{1}}{{x}_{1}+3}$=$\frac{{y}_{1}}{m{y}_{1}+6}$£¬
CBµÄбÂÊk2£¬k2=$\frac{{y}_{2}}{{x}_{2}+6}$=$\frac{{y}_{2}}{m{y}_{2}+6}$£¬
¡à$\frac{1}{{k}_{1}}$=m+$\frac{6}{{y}_{1}}$£¬$\frac{1}{{k}_{2}}$=m+$\frac{6}{{y}_{2}}$£¬
¡à$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2=£¨m+$\frac{6}{{y}_{1}}$£©2+£¨m+$\frac{6}{{y}_{2}}$£©2-2m2£¬
=2m2+12m£¨$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$£©+36¡Á£¨$\frac{1}{{y}_{1}^{2}}$+$\frac{1}{{y}_{2}^{2}}$£©-2m2£¬
=2m2+12m¡Á$\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$+36¡Á$\frac{£¨{y}_{1}+{y}_{2}£©^{2}-2{y}_{1}{y}_{2}}{{y}_{1}^{2}{y}_{2}^{2}}$-2m2£¬
ÓÉ£¨1£©¿ÉÖª£ºy1+y2=2pm=m£¬y1•y2=-6p=-3£¬
¡à$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2=2m2+12m¡Á£¨$-\frac{m}{3}$£©+36¡Á$\frac{{m}^{2}+6}{9}$-2m2=24£¬
¡à$\frac{1}{{{k}_{1}}^{2}}$+$\frac{1}{{{k}_{2}}^{2}}$-2m2Ϊ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵıê×¼·½³Ì¼°Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ£¬¿¼²éÖ±ÏßµÄбÂʹ«Ê½¼°Î¤´ï¶¨ÀíµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{8}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{\sqrt{3}}{16}$ | D£® | $\frac{1}{16}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | p¡Äq | B£® | ©Vp¡Åq | C£® | ©Vp¡Ä©Vq | D£® | p¡Ä©Vq |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¶Û½ÇÈý½ÇÐÎ | B£® | Ö±½ÇÈý½ÇÐÎ | C£® | Èñ½ÇÈý½ÇÐÎ | D£® | ÕýÈý½ÇÐÎ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com