精英家教网 > 高中数学 > 题目详情
(本小题14分)
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD

(1)证明:AB;         
(2)求面VAD与面VDB所成的二面角的余弦值。
本题14分)
方法一:(用传统方法)(1)证明:平面VAD平面ABCD,ABAD,AB平面ABCD,
面VADABCD=AD,面VAD
(2) 取VD中点E,连接AE,BE,是正三角形,
面VAD, AE, ABVD,ABAE
 ABVD, ABAE=A,且AB,AE平面ABE, VD平面ABE,
,BEVD,是所求的二面角的平面角。
在RT中,,
方法二:(空间向量法)以D为坐标原点,建立空间直角坐标系如图
(1)证明:不妨设A(1,0,0),  B(1,1,0), ,,,
因此AB与平面VAD内两条相交直线VA,AD都垂直,面VAD
(2)取VD的中点E,则,
,由=0,得,因此是所求二面角的平面角。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一个空间几何体得三视图如图所示,则该几何体的表面积为
    
A.48B.32+8C.48+8D.80

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线a、b,以及平面M、N,给出下列命题:
①若a∥M,b∥M,则a∥b;
②若a∥M,b⊥M,则a⊥b;
③若a∥b,b∥M,则a∥M;
④若a⊥M,a∥N,则M⊥N.其中正确命题的个数为(  )
A.0 B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
如图,在三棱中,已知侧面
(1)求直线C1B与底面ABC所成角的正弦值;

(2)在棱(不包含端点上确定一点的位置,使得(要求说明理由).
(3)在(2)的条件下,若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面
(2)设二面角的平面角为,若,求线段长的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将两块三角板按图甲方式拼好,其中,AC = 2,现将三角板ACD沿AC折起,使D在平面ABC上的射影O恰好在AB上,如图乙.

(I)求证:BC ⊥AD;
(II)求证:O为线段AB中点;
(III)求二面角D-AC-B的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在三棱锥C—ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


第Ⅱ卷(非选择题,共90分)
二、填空题:(本大题4小题,每小题5分,满分20分)
13.用一个平面去截正方体,其截面是一个多边形,则这个多边形的边数最多是    条 。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)(本小题8分)
如图,在四棱锥中,平面
(1)求证:
(2)求点到平面的距离
证明:(1)平面

平面 (4分)
(2)设点到平面的距离为

求得即点到平面的距离为              (8分)
(其它方法可参照上述评分标准给分)

查看答案和解析>>

同步练习册答案