精英家教网 > 高中数学 > 题目详情
一个空间几何体得三视图如图所示,则该几何体的表面积为
    
A.48B.32+8C.48+8D.80
C

分析:由已知中的三视图我们可以得到该几何体是一个底面为等腰梯形的直四棱柱,根据三视图中标识的数据,我们分别求出四棱柱的底面积和侧面积即可得到答案.
解:如图所示的三视图是以左视图所示等腰梯形为底的直四棱柱,
其底面上底长为2,下底长为4,高为4,
故底面积S=×(2+4)×4=12
腰长为:=
则底面周长为:2+4+2×=6+2
则其侧面积S=4×(6+2)=24+8
则该几何体的表面积为S=2×S+S=2×12+24+8
=48+8
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,底面,点分别在棱上,且      (Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,是直棱柱,,点分别是的中点. 若,则所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD—A1B1C1D1中,E、F分别是A1B1、  CC的中点,则异面直线AE与BF所成角的余弦值为(    )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱柱中,,点的中点,点上,设二面角的大小为
(1)当时,求的长;
(2)当时,求的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,是正方形的中心,平面,且
(Ⅰ)求异面直线与所成角的余弦值;
(Ⅱ)求二面角的正弦值;
(Ⅲ)设为棱的中点,点在平面内,且平面,求线段的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体的侧棱长为2,的中点,则异面直线所成角的大小为( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD

(1)证明:AB;         
(2)求面VAD与面VDB所成的二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 (本题满分12分)(本题满分12分)如图:在四棱台ABCD-A1B1C1D1中,DD1垂直底面,且DD1=2,底面四边形ABCD与A1B1C1D1分别为边长2和1的正方形.

(1)求直线DB1与BC1夹角的余弦值;
(2)求二面角A-BB-C的余弦值.

查看答案和解析>>

同步练习册答案