精英家教网 > 高中数学 > 题目详情
17.已知数列{an}中,a1=1,an=an-1+3(n≥2,n∈N*),数列{bn}满足bn=$\frac{1}{a_na_{n+1}}$,n∈N*,则$\underset{lim}{n→∞}$(b1+b2+…+bn)$\frac{1}{3}$.

分析 求出an=3n-2,从而bn=$\frac{1}{a_na_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),由此有求出$\underset{lim}{n→∞}$(b1+b2+…+bn)的值.

解答 解:∵数列{an}中,a1=1,an=an-1+3(n≥2,n∈N*),
∴数列{an}是首项a1=1,公差d=an-an-1=3的等差数列,
∴an=1+(n-1)×3=3n-2,
∴bn=$\frac{1}{a_na_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),
∴b1+b2+…+bn=$\frac{1}{3}$(1-$\frac{1}{4}$+$\frac{1}{4}-\frac{1}{7}$+…+$\frac{1}{3n-2}-\frac{1}{3n+1}$)
=$\frac{1}{3}$(1-$\frac{1}{3n+1}$)
=$\frac{n}{3n+1}$.
∴$\underset{lim}{n→∞}$(b1+b2+…+bn)=$\underset{lim}{n→∞}\frac{n}{3n+1}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查数列的前n项和的极限值的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7..已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)判断直线l与圆C的位置关系;
(2)若定点P(1,1)分弦AB为$\frac{AP}{PB}$=$\frac{1}{2}$,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的实轴长度为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=a${\;}^{{x}^{2}-2x}$(a>0,且a≠1),x∈[0,$\frac{3}{2}$]的最大值比最小值大2a,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设$\overrightarrow{a}$=(-2,3),|$\overrightarrow{a}$|=$\frac{1}{2}$|$\overrightarrow{b}$|,且$\overrightarrow{a}$、$\overrightarrow{b}$同向,则$\overrightarrow{b}$的坐标为(-4,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C的对边分别为a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=2$\sqrt{2}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A,B,C,D是直角坐标系中不同的四点,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$(λ∈R),$\overrightarrow{AD}$=μ$\overrightarrow{AB}$(μ∈R),且$\frac{1}{λ}$+$\frac{1}{μ}$=2,则下列说法正确的是(  )
A.C可能是线段AB的中点
B.D可能是线段AB的中点
C.C、D可能同时在线段AB上
D.C、D不可能同时在线段AB的延长线上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c,d∈E,证明下列不等式:
(1)(a2+b2)(c2+d2)≥(ac+bd)2;    
(2)a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={(x,y)|y=0.2|x|-1},集合B={(x,y)|y=m},若A∩B≠∅,则实数m的取值范围是(-1,0].

查看答案和解析>>

同步练习册答案