精英家教网 > 高中数学 > 题目详情

【题目】钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=(
A.5
B.
C.2
D.1

【答案】B
【解析】解:∵钝角三角形ABC的面积是 ,AB=c=1,BC=a=
∴S= acsinB= ,即sinB=
当B为钝角时,cosB=﹣ =﹣
利用余弦定理得:AC2=AB2+BC2﹣2ABBCcosB=1+2+2=5,即AC=
当B为锐角时,cosB= =
利用余弦定理得:AC2=AB2+BC2﹣2ABBCcosB=1+2﹣2=1,即AC=1,
此时AB2+AC2=BC2 , 即△ABC为直角三角形,不合题意,舍去,
则AC=
故选:B.
利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an]的前n项和记为Sn , 且满足Sn=2an﹣n,n∈N* (Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明: +… (n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离之和为.

(1)求动点轨迹的方程;

(2)设,过点作直线,交椭圆于不同于两点,直线 的斜率分别为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某高中随机选取5名高一男生,其身高和体重的数据如表所示:

身高x(cm)

160

165

170

175

180

体重y(kg)

63

66

70

72

74

根据如表可得回归方程 =0.56x+ ,据此模型可预报身高为172cm的高一男生的体重为(
A.70.12kg
B.70.29kg
C.70.55kg
D.71.05kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)若a=﹣1,求f(x)的单调区间;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程。

在平面直角坐标系中,已知曲线 ,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线

(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线

试写出直线的直角坐标方程和曲线的参数方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数的图像在点处有相同的切线,求的值;

(Ⅱ)当时,恒成立,求整数的最大值;

(Ⅲ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A= ,cosB=
(1)求cosC;
(2)设BC= ,求△ABC的面积.

查看答案和解析>>

同步练习册答案