精英家教网 > 高中数学 > 题目详情

设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{cn}满足数学公式,Tn=c1c2+c2c3+c3c4+…+cncn+1,若对一切n∈N*不等式4mTn>cn恒成立,求实数m的取值范围.

解:(1)当n=1时,a1=4(1分)
当n≥2时,an=Sn-Sn-1=2an-2an-1-2n?an=2an-1+2n(2分)

是首项为2,公差为1的等差数列(3分)(5分)
(2)(7分)(9分)
4mTn>cn对一切n∈N*恒成立,则(11分)
(13分)
(14分)
分析:(1)利用递推关系可求求数列{an}的通项公式.
(2)由(1)可得an=(n+1)•2n,代入可求,利用裂项求和可得,4mTn>cn对一切n∈N*恒成立,则的最大值.
点评:本题主要考查了利用递推关系及构造等差数列求数列的通项公式,裂项求数列的和,不等式的恒成立问题的转化求最值,体现了转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案