数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总试卷大全
解析:本题是一个证明三点共线的问题,利用公理3,两平面相交时,有且只有一条公共直线.因此只需证明P、Q、R三点是某两个平面的公共点,即可得这三个点都在两平面的交线上,因此是共线的.
证明:设△ABC确定平面ABC,直线AB交平面α于点Q,直线CB交平面α于点P,直线AC交平面α于点R,则P、Q、R三点都在平面α内,
又因为P、Q、R三点都在平面ABC内,
所以P、Q、R三点都在平面α和平面ABC的交线上,而两平面的交线只有一条,所以P、Q、R三点共线.
科目:高中数学 来源: 题型:
(2)如图,A面BCD ,E 、F 、G 、H分别是AB 、BC 、CD 、DA上的点,若EH∩FG=P.求证:P点在直线BD上.
如图,已知△ABC在平面α外,它的三边所在直线分别交平面α于点P、Q、R,求证:P、Q、R三点共线.
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区